
Using surface curvature and topological features from
shape-from-shading to improve shape-from-stereo

William Thimbleby

March 13, 2003

i



Abstract

This projects investigates the use of shape-from-shading to improve shape-from-
stereo. Using of topological and curvature information provided by the 2.5D surface
information provided from shape-from-shading, to provide better information to create
an improved point-to-point correspondence between stereo images. The techniques will
be compared with a simple stereo algorithm and the performance of different shape-
from-shading information will be compared to direct pixel intensities.

Word count: 17847 using command line program ‘wc’ on LATEX sources

ii



Contents

Contents iii

List of Figures vi

1 Introduction 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Vision 3

2.1 Visual information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Shape-from-shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 What is shading? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Recovering shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Shape-from-stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 What is stereo? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Recovering shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Photometric Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Combining shape-from-shading and shape-from-stereo . . . . . . . . . . . . . 12

3 Algorithms in detail 13

3.1 Shape from shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iii



3.1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Shape-from-stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Stereo algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Matching cost computation . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Aggregation of cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.5 Disparity computation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.6 Disparity refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Topological and curvature information . . . . . . . . . . . . . . . . . . . . . 23

4 Techniques used 27

4.1 Shape-from-shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Initialising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.3 Enforcing the IIR as a hard constraint . . . . . . . . . . . . . . . . . 30

4.2 Shape-from-stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Matching cost computation . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Disparity calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Implementation 35

6 Test data 37

6.1 Disparity calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



6.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Analysis 41

7.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Results 43

8.1 Evidence measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.3 Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.4 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.5 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.6 Real world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9 Conclusion 55

9.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References 57

A Test data 59

B Source code 64

v



List of Figures

1 Dalmatian by R.C. James . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A cube and sphere with only shading information. . . . . . . . . . . . . . . . 6

3 A matt and specula sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 A stereo pair of heads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 An auto-stereogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Stereo disparity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Cone of ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Disparity calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Stereo pairs for different frequencies. . . . . . . . . . . . . . . . . . . . . . . 38

10 Different lighting conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11 Uniform and Gaussian noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

12 University of Bonn’s synthetic corridor. . . . . . . . . . . . . . . . . . . . . . 40

13 Normal map of the left stereo head . . . . . . . . . . . . . . . . . . . . . . . 43

14 Maximum curvature of the stereo pair of heads . . . . . . . . . . . . . . . . . 44

15 Mean curvature of the stereo pair of heads . . . . . . . . . . . . . . . . . . . 45

16 Gaussian curvature of the stereo pair of heads . . . . . . . . . . . . . . . . . 45

17 Curvedness of the stereo pair of heads . . . . . . . . . . . . . . . . . . . . . . 46

18 Shape index of the stereo pair of heads . . . . . . . . . . . . . . . . . . . . . 46

19 Performance of normal map evidence measures for surface frequencies . . . . 47

20 Stereo pair for surface z = cos(x× s)× cos(y × s) where s = 0.125 . . . . . . 48

21 Ground truth and calculated disparity maps for pixel intensities and normals 48

vi



22 Performance of all evidence measures for surface frequencies . . . . . . . . . 49

23 Performance of normal and shape index evidence measures for surface ampli-
tudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

24 Ground truth and calculated disparity maps for pixel intensities and normals 51

25 Performance of normal and shape index evidence measures for different light-
ing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

26 Performance of normal and shape index evidence measures for noisy pictures 53

27 Disparity maps for pixel intensities and normals and mean curvature for uni-
form noise of 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii



1 Introduction

1.1 Outline

Shading and stereo disparity are both important visual clues that the human brain uses to
extract 3D data from the 2D projections projected onto the left and right eyes’ retinas. The
aim of this project is to try and combine these two visual depth clues, replicating part of
the human brain’s ability to see in a computer algorithm.

Stereo algorithms are mostly based on creating a point-to-point correspondence between
two stereo images from two different view points. However these algorithms are especially
bad when it comes to smooth texture less surfaces such as skin, due to the lack of any
significant features. Shape-from-shading seems like the ideal solution, not only does it extract
topological and curvature information from smooth texture less surfaces but it can provides
rotationally invariant information, a quality necessary to create a correspondence between
two different view points, looking at the same scene where the rotation of a surface is different
from each point of view; an ideal combination.

Scharstein first suggested using shading information to aid stereo algorithms in [18]. Where
he used the actual image gradient to create a point-to-point correspondence between images.
Worthington [26] adapted Scharsteins work to use normal fields generated from shape-from-
shading, instead of the gradient of the image. Using Worthington and Hancocks robust
shape from shading algorithm that was outlined in [28]. The shape-from-shading algorithm
was improved in [29] by applying topological constraints to it.

The outline of this project is as follows. In this section, Section-1, I look at Vision and how
humans see. In Section-2 I take a general look at visual information, then specifically at stereo
disparity and shading information. In Section-3 I look at shape-from-stereo and shape-from-
shading algorithms in detail, and the combination of the two. In Section-4 I look at the actual
methods I use for evaluating the effectiveness of topological and curvature information to
improve stereo matching. In Section-5 I briefly overview the actual implementation. Creating
a suitable data set for testing is then covered in Section-6. In Section-7 I cover the analysis
of the results. Section-8 is a review of all the results, and an evaluation of the effectiveness
of the different curvature information. Finally in Section-9 I offer some conclusions and a
few suggestions for further work.

1.2 Introduction

“vision is the process of discovering from images what is present in the world,
and where it is.” Marr [12]

1



Vision is one of the strongest of our senses. In any instance we process an enormous amount
of information, and we process this information with apparent effortlessness. For instance
there is little conscious effort that goes into reading this page, unlike the mental effort that
goes into playing a game of chess.

We rely on sight for almost everything we do; consequently the world around us has been
shaped according to our ability to see. From signposts to books and videos, we have shaped
our world to our strongest sense. Although it is possible to live successfully without sight,
life becomes much harder. Therefore for a computer or robot to successfully function well in
the world we have created, it has to be able to see. Not surprisingly then it has long been a
dream of computer scientists to make computers “see”.

In 1966, artificial-intelligence guru Marvin Minsky famously assigned a student a little sum-
mer project, to simulate human vision. With vision completed by the end of summer, Minsky
figured, it would be onward and upward from there. Locomotion, speech, face recognition,
language translation, manual dexterity, spatial orientation – all would fall to the might of
symbolic logic. In short, real AI was supposedly just a few years clicks away.

However contrary to what was originally thought, when solving computer vision was famously
set for that final year project by Marvin Minsky in 1966. It turned out to be one of the more
hubristic predictions in the history of science. The seemingly hard problems for humans
have turned out to be easy for computers and vice-versa the things we do with little effort,
such as understanding languages and seeing, have turned out to be virtually impossible for
computers to do. Whereas computer programs can now almost consistently beat the best
human players at the brain taxing problem of playing chess. Whether this is inherent in
the differing structure of our brain to that of a microchip is a question for psychologists.
However what is clear is that we have had little success in replicating the ability of human
vision after 30 or so years of trying.

Perhaps one of the reasons we have failed to do this so far is because our vision is so
important. Perhaps our standard of what we mean by ‘see’ is too high. Do computer need
to see as well as we do, or even in the same way? We know from robotics (and frogs) you can
perform well in the world without being able to see as well as (knowledge-based) humans
do. And we know from perceptual psychology, our vision is pretty idiosyncratic, we suffer
from lots of illusions; do we want computer vision to have the same illusions? Is it possible
to avoid them? Unfortunately all these interesting questions are far beyond the scope of this
project.

Even seeing for us although we don’t notice is extraordinarily complex in fact almost half
our brain is thought to be used in enabling us to see, it is only that it is sub-conscious that
means we don’t notice. Yet it only takes about 200 msecs from seeing to the occurrence
of depth perception. A duration that is very close to the time needed for the information
on the retinae to reach to the visual cortex via the visual pathway. Do we even have the
computer power available to us yet?

2



2 Vision

2.1 Visual information

In seeing we use many different bits of visual information to extract what we are actually
looking at. Taking the essentially 2D information projected onto the back of our retinas,
we pick out different bits of information that allows piece together the 3D world we live in.
In this section I summarise something of what vision involves and then briefly cover both
shape-from-stereo and shape-from-shading processes.

We call the different bits of visual information, from which 3D data can be recovered, depth
cues. Below I list the most important depth cues, which we use as humans and computer
scientists have tried to exploit.

• Perspective: The further away something is the smaller it looks. Parallel lines join at
vanishing points and textures grow finer as distance increases.

• Parallax: Closer objects appear to move faster than those further away, as the viewer
either moves their head or the objects move. This happens all the time as our eyes
move around.

• Binocular Disparity: The same point in two stereo images seen from two separate view
points, appear to be in different places. This disparity is directly related to the distance
to the point.

• Interposition: Light travels in a straight line and objects closer to the viewer exclude
those further away.

• Shadowing: An object lit from a singular direction casts a shadow along the direction
from the light source.

• Occlusion: Light travels in a straight line, an object closer to the viewer than another
blocks the object further away.

• Hazing: Objects distant in the real world are hazed (increasingly filtered to blue)
because of dust and water droplets.

• Accommodation: As the eyes lenses adjust to look at things further away, those close
up become blurred, and vice-versa.

• Shading: The angle of a surface relative to the viewer and light source, and the surface
properties dictate the surface’s colour and shading.

• High Level Information: Actual knowledge about the shape and structure common
to objects before they are seen. This is the one visual clue that will probably not

3



be realised using computers for a long time. For instance the general makeup of a
face, nose, eyes, ears, and mouth, is high level information, we expect to see a nose in
between two eyes.

Figure 1: Dalmatian by R.C. James

For example this image, Figure-1, of a Dalmatian by R.C. James, is hard for a computer to
process but a human who knows what a Dalmatian is has a much easier job.

Each of these different sources provides some information that helps create the internal model
of the external world that we are actually seeing. We are surprisingly adept at determining
what we are looking at from even very limited information, a few clues are all we need.
For instance people can function almost as equally well with one eye as with two. One
of the challenges of vision, although not addressed in this project is combining all these
different sources of visual information. Most current techniques use only a single depth cue,
such as stereo disparity or shading. This is partially because of the enormous complications
of combining the separate and probably inconsistent depth cues. This general aim of this
project is to combine both shading and binocular disparity in the hope that this will lead
to an improved image extraction, specifically for texture-less objects where current stereo
algorithms struggle.

4



2.2 Assumptions

While the above list of depth clues is by no means complete, it demonstrates a wealth of
information from which 3D shape can be computed. However, scene reconstruction is an
inverse problem and generally does not have a unique solution, i.e., it is ill-posed [21]. Con-
sequently, additional assumptions and heuristics are generally needed to make the problem
tractable. Some of the common assumptions are listed below.

Ideal reflectance: Surfaces in the scene are often assumed to satisfy ideal reflectance
models. For instance, stereo and shape-from-shading techniques generally assume a perfect
Lambertian (isotropic) reflection model with no transparency. Consequently these techniques
perform poorly in the presence of specularities and other deviations from the model.

Smoothness: Imposing smoothness, or regularisation functions is also a very common
method for making the problem tractable. Choosing the reconstruction that is smoothest
yields a better-conditioned problem but has it’s own disadvantages, for example it has the
tendency to over smooth, removing sharp edges or missing thin structures in the scene.

Ideal projection: Simplified projection models like orthographic projection and the ideal
pinhole projection are used to make the reconstruction equations more tractable. Conse-
quently, techniques that use these approximations pay a penalty in terms of accuracy and
are not well-suited for applications that demand high-accuracy surface measurements. This
is can however be an accurate assumption, if care is taken over the production of the images.

2.3 Shape-from-shading

Shape from shading is probably one of the simplest problems to state in vision and one of the
most complicated to solve. Given a single intensity image of a smooth curved object, how
can the shape of the object be recovered? The shape-from-shading problem and its solution
was pioneered in the vision community by Berthold Horn in his 1970 doctoral dissertation
[5]. Additional constraints are needed to make the problem well-posed. It is generally solved
by assuming a simplified ideal reflectance, Lambertian, and surface smoothness.

Shading on its own is a powerful depth and surface clue that leads to an understanding of
what you are seeing. For instance below in Figure-2 is an artificially created image of a sphere
and cube that contains only shading information. Even though only shading information is
available, the human brain has no problem in determining what the objects are.

The cube and sphere above in Figure-2 are lit by a single light source at the same location
as the viewer, so there is no shadowing of any part of the objects.

5



Figure 2: A cube and sphere with only shading information.

2.3.1 What is shading?

To solve the shape-from-shading problem, it makes sense as the first step to study the image
formation process. Shading is the result of illumination, light energy is either emitted or
reflected from the surface. Most objects do not emit light but reflect light energy from a
light source such as the sun or a light bulb. The perception of an object’s colour depends
on the spectrum of energy in various wavelengths illuminating from the objects surface, the
reflectance function of the objects surface and the spatial location and orientation of the
surface and the viewer. What is seen also depends on the spectral sensitivity of the sensor.
For instance eyes have different wavelength responses to an infra-red camera.

Shading is the variation in illumination across the object, which primarily occurs because the
surface reflects differing amounts of light from the light source back to the viewer, depending
on what angle the surface is at relative to both the light source and the viewer. For instance,
the greater the angle between the surface normal and the light incident vector the darker
the surface will usually appear. The actual amount of reflected light in a particular direction
depends on the microstructure of the material, which can be described by a bi-directional
reflectance distribution function (BRDF). That for each slant and tilt angle of the incident
ray and each wavelength the ratio of the reflected intensity for each tilt and slant angle of the
reflected light is computed. The reflected light can be measured by a reflection goniometer
and approximated by a continuous function, these are called reflectance functions. However
most of these are usually too complicated for algorithms to handle well. Luckily there are
a couple of simpler models, most notably the ideal-diffuser or Lambertian surface. Which
provide a good approximation for matt surfaces, and for most surfaces including skin. For a
Lambertian surface the incident light is reflected equally in all directions, and the brightness
is proportional to the cosine of the angle between the surface normal and the incident angle
of the ray of light.

The assumption of a matt material for the right hand sphere above in Figure-3 will repro-
duce the wrong surface when shape-from-shading is applied. This is the disadvantage of

6



Figure 3: A matt and specula sphere.

assuming a constant surface reflectance function. Using simpler models for shading schemes
will inaccurately reproduce the surface, for any but the surfaces that the assumptions are
accurate. Some effort has been put into using shading information from textured objects,
however there has not been a great deal of success.

Variations in brightness are not only due to surface orientation, but also to variations in
surface properties. For instance the picture of a cube and sphere, Figure-2, is actually only
two-dimensional and the apparent shading changes due to apparent surface orientation, are
in fact due to variations in surface properties on the printed page. The human brain is
remarkably good at distinguishing shading from texture; computers are not however. And
even we are fooled by gradual changes in surface properties as opposed to sharp changes that
are easier to distinguish. Which accounts somewhat for the success of makeup, which relies
on gradual changes in surface properties to make features appear to have a different shape,
hopefully a more aesthetic one.

And not only do surface properties affect the shading of a surface. In the real world, especially
indoors, illumination is often extremely complex. This comes from multiple light sources and
secondary illumination, light bouncing off one surface then another before reaching our eyes.
And mutual illumination where the light from one surface may illuminate another, which in
turn can re-illuminate the first. For instance when a room is lit from a single source it is
still possible to read a book held between you and the light. The complexity introduced by
secondary and mutual illumination, means that these effects are almost impossible to treat
analytically. It is not surprising then that, little real progress has been made with the shape
from shading problem except under the assumption of very simple lighting conditions. Horn
[6] was one of the first to give careful analysis of the shape from shading problem and a
single distant point light source was one of his assumptions.

Shadowing also plays a part, as it removes all shading detail in a singular point light source
environment. It is however useless alone as a depth cue as it provides very limited information
over small parts of an image. Compared to shading which provides information all over
the image. But the edges of the shadow can provide contour information, and shading
information when the shadow is from a volume light source. From a distance fine structure,
such as ridges, can provide a different reflectance function because the shadowing of the
ridges cannot be resolved.

7



It is possible to uniquely generate an image from a representation of an object under given
lighting conditions and surface properties. Such as the image in Figure-2. The shading-
from-shape problem is easily solvable and is used for all sorts of applications, from games to
CAD. The reverse problem of shape-from-shading is much more complex.

2.3.2 Recovering shape

How does the human visual system recover shape from shading and contours? We find
that some shapes are perceived very easily, while others take longer. High level information
is an important part of our shape-from-shading process. Barrow and Tenenbaum showed
that the line drawing of the shading pattern appears to play a central role in interpreting
shaded patterns. Mingolla and Todd’s study of human visual system [13] has shown that the
traditional assumptions of piece-wise smoothness, a Lambertian surface, and known light
source direction are invalid from a psychology perspective. In fact it is most likely that the
majority of shape-from-shading algorithms, with their underlying mathematics, integration
and iteration do not come close to the method the human visual system uses. Even then
there are impossible surfaces for uniform lighting and reflectance function, that computers
will have no hope recovering.

Shape-from-shading is usually only initially concerned with recovering the local surface ori-
entation from the local variations in measured brightness. The actual surface, rather than
the surface orientation, can be obtained but only through further processing. The problem
is complicated because the brightness of a point on a surface does not depend alone on
the surface orientation, but also on the spatial position and the reflectance function of the
surface.

2.4 Shape-from-stereo

We use stereo vision all the time, in order to play games like tennis or football. We use
it when reaching to pick up an object. It is one of the most powerful depth cues, often
overriding many of the others. Predators use it to catch their prey, and the military use it
to detect camouflaged objects, the camouflage only conceals a monocular image; in stereo
you’ve still got the tell-tale bumps.

We easily manage to recover the 3D shape from 2D photographs and sketches. Shading and
contours are some of depth cues we use there to recover the 3D shape. But there are also
many cues that our visual system uses for recovering 3D shape from the 3D world. Stereo
disparity is one of these cues, there is no stereo disparity in a 2D photograph, it exists from
looking at the 3D world itself.

Stereo disparity is a powerful visual depth clue that humans use to extract 3D information

8



from the world around them. Stereo vision emerges from the differences between what the
left and right eyes see. Due to the distance between the eyes (interocular distance), the
projections of a certain point in the world on the two retinae are at different positions in
each eye. The difference in these two positions in each eye is called disparity and is directly
related to the distance to the point in the real world. In simple situations is inversely
proportional to distance and may therefore be used to compute 3D geometry. It is this
baseline difference in the positions of the eyes that produces the stereo disparity. Some birds
move their heads in order to increase their baseline (to increase the disparity). And radio
telescopes use baselines, distance between the two sensors, the diameter of the earth’s orbit,
taking a picture every half year, one on either side of the sun. This is because the increased
baseline provides an increased disparity and thus a greater accuracy.

2.4.1 What is stereo?

An different image is created on each of the eyes’ retinas. These two images are different
from each other because of the distance between the eyes, this is the very basis of any
vision system in nature. The eyes and the brain attempt to overlap the two images as much
as possible, by rotating the eyeballs towards a mutual focal point, thus creating an angle
between the two eyes, called their parallax. Computer stereo algorithms often do not have to
deal with rotation, because the input is constrained so that the algorithm can be simplified.
Below in Figure-4 is a synthetic stereo pair of heads, the different image each eye would see
if looking straight at a three dimensional head is positioned side by side. You can trick the
brain to see the three dimensional head by looking through the page until the two heads
merge, it takes practice.

Figure 4: A stereo pair of heads.

In the auto-stereogram below in Figure-5, the only information available to the brain is that
of stereo disparity. Yet when the brain is tricked into looking for greater disparity than
there actually is a clearly defined 3D object can be seen. Just like the stereo pair above
you can trick the brain to see a three-dimensional shape by looking though the paper until
the triangles at the bottom of the auto-stereogram merge. You should see a square floating
above the background.

9



Figure 5: An auto-stereogram.

The auto-stereogram above also provides a useful example showing that stereopsis for humans
is a low-level process and does not require any abstract or high-level understanding of the
image. Although that is not to say a high-level understanding wouldn’t improve the process.
Creating a stereo cohesion between what the two eyes see therefore does not need any
recognisable features in either eyes’ image.

2.4.2 Recovering shape

To extract a three dimensional surface from a stereo pair, first you correspond each point in
the left image with exactly the same point in the right image. The disparity is the distance
between the two points and directly gives the distance to that point, from which the surface
can be constructed. Easy? No, actually finding the same point in both images is very hard.
You could shine a laser pointer at every point seen from one eye to find the same point from
the other eye, but it would negate the point of stereo vision, a range finder would be much
more use.

It is the accuracy of the point-to-point correspondence created between the left and right
images that determines the accuracy of the three dimensional surface that you recover. If
the correspondence is done without error then the 3D surface is without error. However
there are many reasons why determining corresponding points is made more difficult. One
reason is the non-Lambertian reflectance properties of most non-matt surfaces, the light
reflected from the surface depends on the viewing angle and hence a specific point on the
surface has a different appearance, intensity or colour, for each eye. Another is that noise
that appears in any sensor either biologic or electronic, which creates differences in intensity

10



values individual to each eye. Areas with no significant texture and areas with repetitive
texture like a chess board increase the ambiguity as similar matches could be made to many
different points. Occluded areas, areas that are seen in one image but in the other are another
source of ambiguity because we do not know which areas are occluded before calculating the
correspondence. The same effect can be seen looking through your hand close to your face,
each eye sees different bits of the world behind your hand, and it is impossible to create a
point-to-point correspondence for those areas, thus lacking depth information.

The term disparity was first introduced in the human vision literature to describe the dif-
ference in location of corresponding features seen by the left and right eyes by Marr [12].
Horizontal disparity is the simplest and most commonly studied phenomenon, but vertical
disparity is possible if the eyes don’t lie in a horizontal plane. And although in general
disparity is not confined to a single horizontal axis, and has been generalized to a three-
dimensional projective transformation by [2, 20]. I assume that it is confined to a horizontal
axis, so as to simplify the analysis of the algorithms and also because the assumption is
accurate for the images I will use. All of the images I use are taken on a linear path with
the optical axis perpendicular to the camera, i.e no parallax. Therefore the original inverse-
depth interpretation of disparity suffices. Thus the correspondence between a pixel (x, y)
and a pixel (x, y) in the matching stereo image, is given by.

x′ = x− d(x, y)

y′ = y (1)

Where d(x, y) is the disparity for the pixel (x, y) in the left eye, and (x′, y′) is the correspond-
ing pixel in the right eye. The disparity is always positive, and the corresponding point in
the right image is always to the left of the same point in the left image.

2.5 Photometric Stereo

The difficulties with shape from shading may be avoided by a technique that cannot possibly
have any biological twin. It works by acquiring two or more images of the object under
different illuminations. Introduced by Woodham [24]. Each image provides one constraint
on the normal, and therefore two images are sufficient to recover the normal up to a small
number of possible solutions, and three images almost always yield a unique solution for each
image pixel. Photometric stereo enables the relaxing of the strong smoothness conditions
imposed by classical shape from shading approaches, and therefore yields much more reliable
shape estimates.

Although not directly related to shape-from-stereo, this process has aspects of both shape-
from-shading and stereo. Whether it is possible to apply a similar sort of technique to stereo

11



images of the same object is unlikely, and if possible very complicated, but it would be very
neat.

2.6 Combining shape-from-shading and shape-from-stereo

Shape-from-stereo relies on creating a point-to-point correspondence between two images.
However when there is little detail or large texture-less areas finding the same point in both
images can be made harder, since most stereo algorithms rely on defined texture, which is
easy to match. This deficiency in shape from stereo is ideally complemented by shape-from-
shadings ability to generate a surface from texture-less surfaces.

We can use the surface information from the shape calculated from the shading on a surface
to create the point-to point correspondence that stereopsis requires. This can be achieved
either by directly matching the needle maps like Worthington [26] or by using higher level
curvature and topological information about the surface. The benefit of using topological
and curvature information is that it can be created rotationally invariant and hence the same
point on a surface has exactly the same value when viewed from different view points. Which
is one of the necessary requirements to create an accurate point-to point correspondence.

What curvature information and how to weight the information, to achieve an improved
match between stereo images, is what this project aims to discover.

12



3 Algorithms in detail

In this section I will cover the theory in more depth and the main ways of achieving both
shape-from-shading and shape-from-stereo.

3.1 Shape from shading

3.1.1 Theory

Shape from shading is a very complex problem. This comes from the fact that there are an
infinite number of surfaces and orientations, not to mention an infinite number of lighting
conditions, for every pixel in the image that would give the correct appearance. Even with
constraints on lighting, such as a single point light source at an infinite distance, and a
constraints on the surface reflectance function, uniformly being a Lambertian surface there
are still an infinite number of orientations for each point on the surface that achieves the
correct appearance.

Therefore to make the problem tractable, simplifying assumptions are made. Different shape-
from-shading schemes may make different assumptions. Although almost universally the
assumption that brightness is independent of spacial position is used. In other words it is
assumed that the viewer and the light source at far enough away from the object so that only
the orientation of a surface affects its brightness. In other word the shading of an object is
directly related to the surface orientation at that point independent of its spatial position.
Thus most shape-from-shading algorithms do not concern themselves with extracting depth
or true 3D information from the image but only the local surface orientation, this is often
called a 2.5D sketch. A 3D representation of the image can then be calculated from the 2.5D
sketch, or the sketch can be used to calculate curvature or topological features.

A surface is described by its height at any particular location, however the 2.5D sketch
recovered from shape-from-shading is only partial, describing only the orientation. Which
can be most straightforward represented by a set of surface normals. Otherwise known as a
needle-map, since the normals resemble a collection of needles.

The surface orientation at any singular point on the surface can then be characterised by
the surface gradient in the x and y direction, or the slant and tilt angles. p = ∂z/∂x and
q = ∂z/∂y. which gives the local unit surface normal as n̂ = (−p,−q, 1)T .

Since the reflecting properties of a point on the surface determine the brightness of the
corresponding portion of the image, a method specifying the surface orientation from the
brightness is required. For a unit surface normal, the brightness as a function of the ori-
entation is written as R(n̂). This function is known as the reflectance map. The general

13



shape-from-shading solution can therefore be expressed as:

E(x, y) ∝ R(n̂(x, y)) (2)

Where E(x, y) is the brightness of the image at the point (x, y) and n̂(x, y) is the unit surface
normal at the point on the surface that corresponds to the point (x, y) in the image. Usually
it is assumed that some calibration process has taken place either on the brightness or the
surface needle map with respect to the other. Therefore the proportionality factor is usually
ignored and the above solution is written as:

E(x, y) = R(n̂(x, y)) (3)

This is known as the image irradiance equation (IIR).

The function R is directly related to the BRDF of the material. Which can be determined
experimentally of by a standard equation. R can be very complicated for any real surface,
which is why we use simpler models that provide approximations to the real BRDFs. The
most common of these solutions is the Lambertian surface, where the brightness of a point
on a surface is proportional to the cosine of the angle between the surface normal and the
light incident vector. The IIR of a Lambertian surface is therefore:

E(x, y) = R(cos θ) (4)

Where θ is the incident angle. Since s is the global unit light source direction and n̂ is the
local unit surface normal, then the reflectance function for a Lambertain surface is given by
R(n̂) = n̂ · s.

Shading plays an important role in human perception of surface shape. Researchers in human
vision have attempted to understand and simulate the mechanisms by which our eyes and
brains actually use the shading information to recover the 3-D shapes. The extraction of
shape-from-shading by our visual system is strongly affected by stereoscopic processing.
Barrow and Tenenbaum discovered that it is the line drawing of the shading pattern that
seems to play a central role in the interpretation of shaded patterns [1]. Mingolla and Todd’s
study of human visual system based on the perception of solid shape [13] indicated that the
traditional assumptions in shape-from-shading (Lambertian reflectance, known light source
direction, and local shape recovery) are not valid from psychology point of view. One can
observe that human visual system uses shape-from-shading differently than computer vision
normally does.

14



3.1.2 Approaches

Summarised the shape-from-shading problem is to recover a piece-wise continuous surface,
whose height function is z(x, y) from the image brightness E(x, y). The IIR unfortunately
still defines an infinite number of possibilities for the surface orientation for any given bright-
ness. Even after all the many simplifications that have been made, the shape-from-shading
problem is still under constrained. Thus using the IIR alone to recover a surface would
be impossible. This has lead to many different approaches being tried, each using different
constraints to make the problem tractable.

Given the brightness at each point in the picture, any of the infinite choices of surface ori-
entation could be picked at random that satisfies the IIR. However this will almost certainly
not result in a continuous surface. Since the orientations correspond to some underlying sur-
face, it is possible to show that neighbouring orientations cannot be chosen at random. The
most common approach to constraining the shape-from-shading problem thus is to enforce
some sort of smoothness measure on the surface. This is the constraint Horn used in his
original work [6]. The shape-from-shading problem is then solved in an iterative manner.
An initialisation function is used to choose an initial needle map directly from the image
brightness. The needle map is then adjusted according to the constraints and smoothed
iteratively. The most common approach to enforcing a smoothness measure is to use a regu-
larisation function that penalises departure from the IIR while imposing smoothness on the
needle map, this is known as an energy minimisation approach.

Not all shape-from-shading algorithms however are energy minimisation approach algo-
rithms. The majority of shape-from-shading algorithms can be classified based on the con-
ceptual differences in the algorithms in one of three ways. 1. Minimisation approaches 2.
Propagation approaches, and 3. Local approaches. The following subsections briefly review
these approaches. This is covered more fully in Zhang’s survey of shape-from-shading [16].

Minimisation approaches Minimisation approaches obtain the solution by minimizing
an energy function. The shape-from-shading function is formulated as a function of surface
gradients. Brightness and smoothness constraints are usually added to overcome the inherent
under-constrained nature of the IIR.

The brightness constraint requires that the reconstructed shape produce the same brightness
as the input image at each surface point, while the smoothness constraint ensures a smooth
surface reconstruction. The shape is then computed by minimizing an energy function that
consists of the above constraints.

We consider the original variational approach, Horn and Brooks [7], which is expressed in
terms of unit surface normals. It is a minimisation approach that uses the following error
function as its energy minimisation function.

15



I =

∫∫
(E(x, y)− (n · s))2+︸ ︷︷ ︸

BrightnessError

λ

(∥∥∥∥∂n∂x
∥∥∥∥2

+

∥∥∥∥∂n∂x
∥∥∥∥2
)

︸ ︷︷ ︸
RegularisingTerm

+µ(‖‖n‖‖2 − 1)︸ ︷︷ ︸
NormalisingTerm

dx dy (5)

Where s is the light source direction and n is the surface normal, n · s is then the cosine of
the incident angle for unit vectors s and n. (E(x, y)− (n · s))2 is then the squared difference
in measured brightness form the predicted value for a Lambertian surface. This first term
is known as the brightness error and encourages satisfaction of the IIR, or data-closeness
between the measured image intensity and the reflectance function, in this case the Lamber-
tian IIR Equation-4. The middle term or regularising term imposes a smoothness constraint
on the recovered surface normals. The final term imposes normalisation constraints on the
recovered normals. µ is a Lagrangian multiplier.

The principle criticism of Horn and Brooks’ method, and of similar approaches, is the ten-
dency to over smooth. The smoothness constraint that penalises large surface orientation
changes. using directional derivatives is trivially minimised by a flat surface. Therefore
there is a conflict between the data and the model. The λ Lagrange multiplier typically also
needs to be large for numeric stability and therefore tends to dominate the brightness error,
which typically leads to over smoothing of the needle map and the lose of fine detail. Also
since the approach introduces parameters in the form of the Lagrange multipliers, it requires
parameter tuning.

Global minimisation approaches have many advantages, over the local and global propagation
techniques since they can recover a surface from an image and a light source direction without
extra information. They are also more robust and generally applicable.

Propagation approaches Propagation approaches propagate the shape information from
a set of surface points (e.g., singular points) to the whole image.

In this approach there is a characteristic strip along which one can compute the surface height
and gradient, provided these quantities are known at the starting point of the strip. Singular
points where the intensity is either maximum or minimum are usually the starting points. At
singular points the shape of the surface is either known or can uniquely be determined. The
first attempt for solving SFS problems using this method seems to be mentioned in Horn
[16]. In this technique, shape information is propagated outward along the characteristic
strips. The direction of characteristic strips is toward the intensity gradient

The major problem with these techniques is that they require initialising with surface infor-
mation, and hence require prior calculations or methods to work.

Local approaches Local approaches derive shape based on the assumption of surface type.
The standard surface assumption in this approach is that the surface is locally spherical at
each pixel point. Intensity and its first and second derivatives or intensity and only its first

16



derivative have also been used to estimates the shape type. All local methods suffer from
incorrect assumptions of the local surface type.

Pentland’s local approach [14] recovers shape information from the intensity, and its first and
second derivatives. He uses the assumption that the surface is locally spherical at each point.
Pentland’s approach is a linear algorithm and solves for shape by linearizing the reflectance
map.

Another local approach uses linearised approximations of reflectance maps to solve the shape-
from-shading problem. Pentland [15] used the linear approximation of the reflectance func-
tion in terms of the surface gradient, and then applied Fourier transform to the linear function
to get a closed form solution for the depth at each point.

Yet another method makes use of computing the discrete approximation of the gradient
[23]. Then the linear approximation of reflectance map as a function of height (depth) is
employed. Using a Jacobi iterative scheme, this technique can estimate the height (depth) at
each point. The main problem of the two latter approaches is with the linear approximation
of the reflectance map. If the nonlinear terms are large, it will diverge.

Algorithmic steps For global algorithms almost all shape-from-shading schemes are iter-
ative algorithms that follow a certain pattern.

1. initialise the needle map with general assumption

2. smooth the needle map

3. make the needle map fit the data better

4. normalise the needle map

5. go to 2

The majority of shape-from-shading techniques will produce a surface normal map that will
almost certainly not represent a real surface. There are two options. 1. Try to recover the
surface itself, or to try and recover a surface as similar as possible to that of the real worlds
surface. Bichsel and Pentland [7] developed a propagation algorithm that is not under-
constrained, but that requires prior knowledge of heights of singular points on the surface.
2. Ignore the fact that the surface normal map does not describe a real surface and simply
use this information on its own to describe the object.

To ensure the surface normal map does represent a real surface, intergrability must be
enforced. This means that the surface z(x, y), can be recovered by evaluating the line
integrals of (pdx+ qdy) along arbitrary contours. In fact Frankot and Chellapa [4] describe
a method that enforced the integrability of the recovered surface, by mapping each estimate
in step-3 to the nearest integrable needle map.

17



3.2 Shape-from-stereo

3.2.1 Theory

There is no standard method or algorithm for shape-from-stereo and there are many different
ways people have come up with to match points in two images. And as many different ways
to represent the corresponding output data.

Stereo algorithms roughly fall into two categories, dense stereo algorithms and sparse algo-
rithms. The majority of stereo algorithms are dense stereo algorithms, i.e. they produce
a univalued disparity function d(x, y), or in other words dense stereo algorithms provide
a disparity at each pixel. Whereas sparse stereo algorithms might match features such as
edges. I will concentrate on dense stereo algorithms since the curvature and topological
information from shape-from-shading is dense itself and would be useless for sparse feature
based matching.

The output from a shape-from-stereo algorithm can also take many forms. The majority of
stereo correspondence methods compute a function d(x, y), which is the disparity for a the
pixel (x, y), with respect to a reference image, which could be one of the input images, or a
“cyclopean” view in between some of the images. This will be the representation I will be
using. However there are other approaches; in particular multi-view stereo methods, where
n different input images are used, possibly from all round the object, use multi-valued [20],
voxel-based [10], or layer-based [8] representations, these are especially useful when dealing
with multi-view stereo methods where each line of sight can have multiple depths. And
others use full 3D models such as deformable models [22] or level-set methods [3].

I am assuming a singular horizontal disparity, which given the simple dense stereo algorithms
means the distance to an point is inversely proportional to the disparity between the images
of where the point appears d(x, y). The mathematics is more complicate when dealing with
stereo images that are rotated, for instance human eyes rotate to look at objects. As you
look at an object to the side the displacement between the eyes changes and the distance
to a specific point is different for each eye. Using pin-hole cameras that always face forward
perpendicular to the horizontal axis joining the cameras, keeps the mathematics simple. The
way disparity works for pin hole cameras is shown below:

Where d is the distance to the object, fd is the focal distance, ed is the distance between
the eyes, x the distance from the left eye to the object, ax and bx are the different distances
from the center of the image for each eye.

ax =
xd + x

d
× fd, bx =

x

d
× fd

⇒ ax − bx =
ed + x− x

d
× fd =

ed

d
× fd

18



ed

d

ax bx

fd

x

Figure 6: Stereo disparity.

⇒ d =
fd × ed

ax − bx

⇒ d ∝ 1

ax − bx
(6)

Where ax − bx is the disparity. For a cyclopeain view half way between the two eyes, the
same point would be viewed at (ax + bx)/2.

The goal of a stereo correspondence algorithm is then to produce univalued function in
disparity space d(x, y) that best describes the shape of the surfaces in the real world. this
can be seen as finding the surface in the disparity space that has some optimal property,
such as lowest cost and best piecewise smoothness. For simpler algorithms, i.e. most local
algorithms this involves a simple “winner-take-all” over the confidence disparity space image
(DSI). In general, a disparity space image (DSI) is any image or function defined over a
continuous or discretized version of disparity space (x, y, d). In practice, the DSI usually
represents the confidence or cost of a particular match implied by d(x, y).

19



3.2.2 Stereo algorithms

The majority of dense stereo algorithms can be broken into a subset of four generalised steps.
These are fairly generally accurate for a majority of stereo algorithms, although the actual
steps will depend on the algorithm.

1. matching cost computation

2. cost (support) aggregation

3. disparity computation / optimisation

4. disparity refinement.

This general breakdown of a dense stereo algorithm was suggested by Scharstein [18].

The matching cost computation is the initial comparison of individual points in each image.
Cost (support) aggregation refines the initial matching cost, usually by making an implicit
smoothness assumption, fairly similar to the way smoothness is used as a regularising term for
shape-from-shading. Disparity computation and refinement compute the disparity function
d(x, y) from the matching/aggregated cost.

Dense stereo algorithms can be divide into two broad classes, local and global. Local
(window-based) algorithms compute the disparity at a given point based on only the in-
tensity values within a finite window, usually making implicit smoothness assumptions by
aggregating support. On the other hand global algorithms make explicit smoothness assump-
tions and then solve an optimisation problem. Such algorithms typically do not perform any
aggregation step, but try to seek a disparity computation that combines some sort of smooth-
ness function with minimising a global cost function. There is also a handful of iterative
algorithms that fall in-between the two broad classes, whose operation more closely resembles
that of iterative optimisation algorithms.

As an example the traditional sum-of-squared-differences (SSD) is a local method. The SSD
algorithm can be cleanly split into the first three steps, as it has no disparity refinement.
Thus the SSD algorithm can be described as these three steps:

1. the matching cost is the squared difference between intensity values at a specific dis-
parity

2. aggregation is done by summing the cost over square windows with constant disparity

3. disparities are then calculated by choosing the minimum aggregated cost at each pixel

20



3.2.3 Matching cost computation

The most common and traditional pixel based matching methods include the squared in-
tensity differences (SD) and absolute intensity differences (AD). Which are simple intensity
comparisons. Other traditional methods include binary matching costs (i.e. match / no
match) [11] which is based on binary features such as edges. These are fairly limited for
dense stereo output but are fairly successful in decoding random dot stereograms. And
normalised cross-correlation which is fairly similar to sum-of-squared-differences (SSD). The
matching cost values for each pixel and all disparities is C0(x, y, d). From the initial disparity
space image.

3.2.4 Aggregation of cost

Global methods usually skip this step as it is combined with minimising a global cost function
to calculate the disparities. Local and window-based methods sum or average the matching
costs over a small local window or support region in the DSI C(x, y, d). The support region
can either be two-dimensional, or three-dimensional in x-y-d space. A two-dimensional
support region is in a disparity plane, encouraging disparities to be equal or for planes to
be generated facing the cameras. Or three-dimensional where the aggregation encourages
slanted surfaces as-well. Two-dimensional cost aggregation can be implemented in many
different ways. Gaussian convolution at a constant disparity. Summing over square windows.
Shift-able windows, windows that can be anchored at different points. Adaptive window
sizes. Or even just windows based on connected components.

Aggregation with a fixed support region can be computed with a singular weight function
w. This works for both three-dimensional and two-dimensional regions.

C(x, y, d) = w(x, y, d)× C0(x, y, d) (7)

A different method all together is to use iterative diffusion where aggregation is performed
by some iterative function, such as iteratively adding the weighted neighbours costs to each
pixel.

3.2.5 Disparity computation

Local Methods: In local methods most of the work is done in the cost computation and
the matching cost aggregation. Computing the final disparities is usually trivial. Winner
takes all (WTA) optimisation is the usual method, where at each pixel the ‘best’ disparity
is chosen, i.e. the one with the minimum cost. However this only enforces a uniqueness

21



match in only one image. The image from which pixels you choose the winning disparities,
the reference image, will be created a many-to-one mapped, instead of the ideal one-to-one
mapping. More than one pixel in the first image can be mapped to the same pixel in the
second image. Breaking one of Marr’s stereo rules of computational stereopsis. This is
the major limitation of this approach and many other correspondence algorithms. However
solutions do exist.

Global methods: In contrast global methods often don’t bother with the aggregation step
and perform almost all the work in the disparity computation step. Most global methods
minimise a global energy function E for a disparity function d. Finding the best disparity
that minimises E which is a combination of how well the disparity function d agrees with
the input images, Edata(d), and how smooth it is λEsmooth(d).

E(d) = Edata(d) + λEsmooth(d) (8)

Compare this equation Equation-8 with Equation-5 which is the global minimisation func-
tion for shape-from-shading. Both have the same structure of a data closeness term and a
regularising smoothness term.

λEdata(d) can be written as:

Edata(d) =
∑
(x,y)

C(x, y, d(x, y)) (9)

where C is the initial matching cost or aggregated matching cost. Edata(d) is the sum of the
costs of the disparity function d at each pixel.

It is the last term, the smoothness or regularising term λEsmooth(d), that is enforces smooth-
ness assumptions that the algorithm makes, a substitute for the aggregation in local methods.
Which to make the optimisation possible is often restricted to only the pixel’s immediate
neighbours.

Esmooth(d) =
∑
(x,y)

ρ(d(x, y)− d(x+ 1, y)) + ρ(d(x, y)− d(x, y + 1)) (10)

Where ρ is a monotonically increasing function of disparity difference, that can take many
forms depending on what sort of surface you want to encourage. Just like the 2D and 3D
cost aggregation support regions.

22



3.2.6 Disparity refinement

Most algorithms compute a set of disparity results that are not very smooth, or better
resemble a staircase than a smooth surface. Some algorithms don’t, such as algorithms that
use splines to model disparity, which usually have an entirely different idea of what disparity
refinement is. For some applications such as view synthesis, these ‘staircase’ disparities
can lead to poor results, where there many tears are created between each discrete level of
disparity. For most applications however it does not matter, such as robot navigation.

Still to solve this problem many algorithms apply a final stage of disparity refinement that
usually involves sub-pixel smoothing. This can be calculated in numerous ways such as
curve fitting, iterative gradient descent or even linear smoothing. However, none of these
work accurately over surface boundaries and have to be confined to the same surface.

As well as sub-pixel smoothing there are also other refinements that you can apply to the
disparity map. For instance occluded areas can be cross-checked, comparing left-to-right and
right-to-left disparity maps, which is useful for algorithms that do not account for occluded
areas such as local based shape-from-stereo algorithms.

3.3 Topological and curvature information

The local shape at each surface point is characterized by several scalar and vector quantities
that are described below. All of which are could be used instead of pixel intensities to
improve a matching algorithm.

Derived from the needle-map that shape-from-shading provides there are numerous different
values that can be calculated. The simplest shape measure that you can get is the vector
measure of the needle map itself. However the needle map is not itself rotationally invariant
and so is possibly prone to difficulties where the objects are close to the stereo cameras and
so have a large rotational difference between left and right images. It is however possible
to produce a matrix capturing the differential structure of a surface that is rotationally
invariant.

The differential structure of a surface is captured by the Hessian matrix:

H =

(
− ∂2z

∂x2 − ∂2z
∂x∂y

− ∂2z
∂y∂x

−∂2z
∂y2

)
(11)

Where the set of surface normals, n = (−p,−q, 1)T = (−∂z/∂x,−∂z/∂y, 1)T can be sub-
stituted into Equation-11. This gives the local Hessian matrix in terms of the needle map
as:

23



H =


(

∂n
∂x

)
x

(
∂n
∂x

)
y(

∂n
∂y

)
x

(
∂n
∂y

)
y

 (12)

where (· · ·)x and (· · ·)y are the x and y components of the parenthesised vector, respectively.
However H is still a viewer-centred representation of the surface curvature and will provide
viewer-centred curvature and topological information. Which would make any matching
functions between stereo pairs more inaccurate. There is fortunately a way to create a
viewpoint-invariant representation of curvature C , developed by Woodham [25].

C =
1√

(1 + p2 + q2)3

[
q2 + 1 −pq
−pq p2 + 1

]
H (13)

The extra terms involving the gradient can be viewed as the conditions necessary to account
for the geometric foreshortening associated with viewing a surface element obliquely.

Principle curvatures The eigenvalues of the viewpoint compensated Hessian matrix C ,
found by solving the eigenvector equation |C − kI| = 0, are the principle curvatures of the
surface. In terms of surface normals, these are given by:

λk
M = −1

2
(c11 + c22 + S)

λk
m = −1

2
(c11 + c22 − S)

S2 = (c11 − c22)
2 + 4(c12c21) (14)

These are the maximum and minimum curvatures on a surface at a specific point, λk
M and

λk
m respectively. The integrability condition (c12 = c21) is frequently used as an additional

constraint for smoothness, to make the surface recovery tractable. However the Hessian in
Equation-13 as an estimate does not in general result in equal values of c12 and c21. Therefore
we do not enforce intregrability at every point on the surface. However if S2 is negative, i.e.
S is undefined, then surface intregrability is enforced using c12 = c21 = (c12 + c21)/2 which
results in a positive value for S2 and a real value for S.

From the principle curvatures calculated from the Hessian matrix we can calculate further
curvature values that might provide a better match for stereo algorithms.

Mean curvature: The mean curvature K is half the sum of the principal curvature.

K =
1

2
(λk

M + λk
m) (15)

24



Gaussian curvature: The Gaussian curvature H is the multiple of the principal curvature.

H = λk
Mλ

k
m (16)

Shape Index: The shape index was created by Koenderink and van Doorn, is a continuous
measure that encodes the curvature information of the surface. Koenderink and van Doorn
[9] defined the shape index φ as:

φ =
2

π
arctan

λk
m + λk

M

λk
m − λk

M

, λk
M ≥ λk

m (17)

The shape index ranges from −1 to 1, is an angular physical measure. A convex surface
point with equal principal curvatures has a shape index of 1. A concave surface point with
equal principal curvatures has a shape index of −1. A saddle surface point with principal
curvatures of equal magnitude and opposite sign has a shape index of 0. A “ridge-like”
surface point has a shape index of about 0.5 while a “valley-like” surface point has a shape
index of about −0.5. Table-1 shows the different classes and the respective bounds of the
shape index.

Table 1: Topographic classes

Class Region-type Shape index
Dome Elliptic [5

6
, 1)

Ridge Parabolic [3
8
, 5

8
)

Saddle ridge Hyperbolic [1
8
, 3

8
)

Plane Hyperbolic Undefined
Saddle point Hyperbolic [−1

8
, 1

8
)

Saddle rut Hyperbolic [−3
8
,−1

8
)

Rut Parabolic [−5
8
,−3

8
)

Cup Elliptic [−5
8
,−1

Curvedness: The curvedness, R, is another measure that is derived from the principal
curvatures:

R =
√

(λk
M)2 + (λk

m)2 (18)

The curvedness describes the scale of the surface independent of its shape. Planar points
have a curvedness of 0 while highly curved regions have large curvedness.

Direction of maximum curvature: Lastly two more vector measures. The direction of
maximum curvature as a 2D vector on the surface can be calculated from the Hessian matrix.

25



Mk
2 =

[
(c12,−1

2
(c11 − c22 + S))T c11 ≥ c22

(1
2
(c11 − c22 − S), c21)

T c11 < c22
(19)

And from the surface normal and the 2D maximum curvature direction on the surface we
can compute the 3 component unit-vector Mk in the image co-ordinate system. Which is
(−n×y,n×x,n), where n is the unit surface normal, x and y are the unit direction vectors
in the image co-ordinate system.

26



4 Techniques used

In this section I cover the actual techniques used for this project.

4.1 Shape-from-shading

The actual implementation I will use was programmed by Will Smith [19]. It is still important
to understand method and the mathematics behind the shape-from-shading scheme used.

A novel geometric shape-from-shading framework was reported in [28, 29, 27] by Worthington
and Hancock. The framework, which rather than just penalising departure from the IIR ,
ensured the IIR was satisfied as a hard constraint during every iteration of the algorithm. It
has been shown to recover needle-maps of higher fidelity and with greater speed than many
existing methods.

The approach is a geometric one, the IIR is viewed as a cone of ambiguity on which the
surface normal must fall. The axis of the cone is the light source direction and the opening
angle is determined by the measured brightness at the corresponding image location. At
each iteration the updated normal is free to move away from the cone. However all normals
are then mapped back to the closest normal lying on the cone of ambiguity. Thus every
intermediate needle map, during iteration satisfies the IIR as a hard constraint. Which
makes sense seeing as the IIR is the only information available to us, this approach therefore
ensures the fullest use of data possible. A side benefit by treating the minimisation function
as a separate constraint to the IIR, the need for a weighting parameter, and thus parameter
tuning is removed entirely.

The infinite set of surface normals that satisfy the IIR for a given point can be considered to
define a cone of ambiguity around the light source direction. That is every surface normal
that satisfies the IIR for a point on the surface falls on this “cone of ambiguity”. This only
works if the surface brightness is irrespective of the angle of viewing.

The set of surface normals that satisfy the image irradiance equation, for a Lambertian
surface, i.e. E − n · s = 0 a lie on the cone of ambiguity. Where n is the surface normal, s
is the light direction.

This shape-from-shading scheme is a global minimisation algorithm and can be broken into
to steps similar to:

1. initialise the needle map with general assumption

2. smooth the needle map

27



arccos(E)

-g

s

n

Figure 7: Cone of ambiguity

3. enforcing the IIR

4. normalise the needle map

5. go to 2

The algorithm is an iterative one, where the needle map is repeatedly refined. It takes a
needle map smoothes it then reinforces the IIR as a hard constraint.

4.1.1 Initialising

The needle map has to start somewhere that satisfies the IIR as a hard constraint. This
is different to the Horn and Brooks algorithm, which is usually initialised by estimating
the occluding boundary normals and pointing all other normals in the direction of the light
source. To satisfy the IIR we could choose any normal that lies on the cone of ambiguity.

Worthington and Hancock’s method initialises each normal so that its projection onto the
image plane lies in the opposite direction to the image gradient g. The normal points away
from the direction of the brightest gradient. This results in an initialisation with an implicit
bias towards convex surfaces. Bright regions are assumed to be peaks and dark region cups,

28



the image gradient therefore points towards the peaks. For surfaces where this assumption
is invalid the shape-from-shading algorithm performs more poorly.

4.1.2 Smoothing

Choosing a constraint function: Worthington and Hancock’s method requires the con-
straint function:

IC =

∫∫
ψ(n(x, y), N(x, y)) dx dy (20)

be minimised. N(x, y) is a set of local neighbourhood vectors about location (x, y) and
ψ(n(x, y), N(x, y)) is a localised function of the current surface normal estimates. The size
of the neighbourhood may vary according to the nature of ψ. For example for a grid of
coordinates i, j the 4-neighbourhood of ni,j is defined as:

N = {ni+1,j,ni−1,j,ni,j+1,ni,j−1} (21)

One of the simplest choices for a constraint function is smoothness that can be written as:

ψ(n, N) =

∥∥∥∥∂n∂x
∥∥∥∥2

+

∥∥∥∥∂n∂y
∥∥∥∥2

(22)

The terms ∂n
∂x

and ∂n
∂y

are the directional derivative of n or the needle map in the x and y
directions respectively. The magnitudes of these quantities are used to measure the smooth-
ness of the surface, large values indicating a highly curved region. This function imposes the
smoothness constraint by penalising large local changes in surface direction. In [29] Wor-
thington and Hancock use an adaptive robust regulariser that uses curvature consistency to
improve the smoothing. By using the variance in the shape index to control the width of the
robust error kernel applied to the needle map to improve the algorithms performance. This
is however beyond the scope of this project.

The update equation for the needle map at iteration k + 1 using the estimate at iteration k
can be derived from ψ to give:

nk+1
i,j = nk

i,j (23)

29



ni,j is the surfacenormal that satisfies the constraint function IC . Using the simple con-
straint function in Equation-22, and if the local neighbourhood is the same as that de-
scribed in Equation-21, then we can simply make nk

i,j the local 4-neighbourhood mean
of the surface normals around the pixel position i, j. The local 4-neighbourhood mean
of the surface normals can be calculated as a simple mean value of the neighbour hood
nk

i,j = 1
4
(ni+1,j,ni−1,j,ni,j+1,ni,j−1), however this quickly leads to a flat surface and results

in poor surface recovery. There are a few alternatives, most notably ... .These try to cre-
ate a piece-wise smooth surface by smoothing everywhere except where there is a surface
boundary. ... We can smooth by a simple Gaussian distribution. The Gaussian smoothing
operator is a 2D convolution, that provides gentler smoothing and better edge preservation
than simple local averaging. The Gaussian distribution formula is:

G(m,n) =
e−

m2+n2

2σ2

2πσ2
(24)

where σ is the standard deviation and (m,n) is a position in the local neighbourhood relative
to the current pixel (0, 0). The Gaussian distribution is a circularly symmetric distribution,
or an isotropic distribution. Will Smith [19] uses a simple 3 × 3 integer approximation to
the Gaussian convolution as his smoothing function.

The severity of the smoothing is provided by the standard deviation, the larger the standard
deviation the heavier the smoothing. Since the distribution is non-zero at every point, an
infinitely large neighbourhood would be required for each pixel. However the Gaussian
distribution is effectively zero further than three standard deviations away from the centre,
(0, 0), thus the neighbourhood can be truncated at this point. Thus for the most commonly
used neighbourhoods, 3× 3 or and 5× 5 the approximate standard deviations of 0.6 and 1.0
respectively are used,

Thus for a 3× 3 neighbourhood the update equation is:

ni,j =
1∑

m=−1

1∑
m=−1

G(m,n)× ni+m,j+n

G(m,n) =
e−

m2+n2

0.72

0.72π
(25)

4.1.3 Enforcing the IIR as a hard constraint

The hard constraint imposed by the IIR is:

30



∫∫
(E − n · s) dx dy = 0 (26)

which must be satisfied.

Although it is clearly possible to incorporate the hard data closeness constraint required by
the IIR directly into ψ, it needlessly complicates the mathematics. The hard constraint of
the IIR is therefore imposed after each iteration.

We satisfy the IIR as a hard constraint after each iteration by mapping the smoothed updated
normals back to the closest normal that lies on the cone, i.e. the closest normal that satisfies
the IIR. The resulting update equation for the normals can therefore be written as:

nk+1
i,j = Θnk

i,j (27)

The hard image irradiance constraint is imposed by the rotation matrix Θ, which maps the
updated normal to the closest normal on the cone of ambiguity. The axis of the rotation is
given by a vector perpendicular to both the updated normal and the light source direction.

(u, v, w)T = nk
i,j × s (28)

The angle of rotation is then given by the difference between the angle subtended by the
intermediate update and the light source, and the apex of the cone of ambiguity. The angle
rotated through is therefore the angle between the updated normal and the light source
direction minus the apex angle of the cone.

θ = − cos−1

(
nk

i,j · s
‖nk

i,j‖‖s‖

)
+ cos−1E (29)

Thus a standard rotation matrix is constructed using the axis, (u, v, w)T, and the angle of
rotation, θ.

Θ =

 c+ u2c′ −ws+ uvc′ vs+ uwc′

ws+ uvc′ c+ v2c′ −us+ vwc′

−vs+ uwc′ us+ vwc′ c+ w2c′

 (30)

where c = cos θ, c′ = 1− c, s = sin θ.

31



4.2 Shape-from-stereo

In comparison to the shape-from-shading technique this technique is simple. In order to
achieve a better comparison of what curvature and topological information performs best,
I use a simple shape-from-stereo scheme so that hopefully the comparisons will be more
general and will extrapolate to other shape-from-stereo schemes.

I use a variation of the sum-of-squared-differences (SSD) shape-from-stereo scheme, the
same method as Worthington used in [26]. Using Scharstein’s break down of dense stereo
correspondence methods [18], we can write the SSD algorithm as a number of steps:

1. the matching cost is the squared difference between intensity values at a specific dis-
parity

2. aggregation is done by summing the cost over square windows with constant disparity

3. disparities are then calculated by choosing the minimum aggregated cost at each pixel

4.2.1 Matching cost computation

The initial matching cost computation, Step-1, varies depending on the data used to create
the matching. There are several different topological and curvature measures that can be
calculated, and there are even more different ways of creating evidence measures that describe
the similarity between the two different points in each stereo image. The evidence measures
can also be combined in many different ways, I however will restrict myself to just a few:

Pixel intensity: The actual raw pixel data, using a sum-of-squared-differences method
to compare pixel intensities. This is the base evidence measure that I hope some of the
surface curvature and topological measures will improve upon. Unfortunately for most of the
synthetic data I will use the sum-of-squared-differences of intensities performs unrealistically
well.

Normal map: The normal map calculated from shape-from-shading, although it is not
rotationally invariant is a useful measure of similarity. To compare two surface normals,
the evidence measure between two normals could be expressed as the angle between them
or more succinctly as the dot product of the normals. Worthington [26] used this measure
whilst also using an exponential to encourage good matches and penalise poor matches, and
also scaling the evidence measure to give a maximum of 1 and a minimum of slightly less
then −1.

E(na,nb) =
ena·nb − e0.5

e1 − e0.5
(31)

32



Principle curvatures We can also use the directions of minimum and maximum curvature,
λk

M and λk
m, on a surface at a specific point for an evidence measure. Either a direct sum-

of-squared or sum-of-absolute differences comparison method can be used. The direction of
maximum curvature will give the best results, since the direction of minimum curvature is a
poor description of a surface.

Mean and Gaussian curvature The same direct sum-of-squared or sum-of-absolute dif-
ferences can be used for mean and Gaussian curvature evidence measures.

Curvedness The same comparison can be also used for curvedness. Curvedness can be used
in evidence measures to provide a weighting for some topological or directional measure that
lack curvedness, such as the normal map or the shape index. This weighting improves the
matching of highly defined areas, weak gradients such as flat surfaces give a lower confidence
than highly defined areas such as ridges.

Shape Index The shape index which ranges from −1 to 1, is an angular physical measure.
And has to be compared so that −1 and 1 are similar. So a simple sum of squared differences
wont work. However with a little simple modification that allows for short walks over the
pole, shape index too can be compared as either an absolute difference or a squared difference.
Another way is to think of the shape index as a unit vector in direction φ and use the dot
product.

Shape index is only a topological measure and ignores the surface curvature, so it is probably
a good idea to try and weight the shape index with by some function of curvedness. For
instance, a simple multiple of e−

1
R , where R is the curvedness. This can be compared in a

polar like fashion, using φ as the angle and the weighting as the length of a vector in 2D
space. The comparison can then be made as a dot product.

Direction of maximum curvature The direction of maximum curvature is either a 2D
vector in the surface that points in the direction of maximum curvature, or a 3D vector in
the image co-ordinate system, either can be used to calculate the evidence for a match. Both
forms are vectors and it makes sense to compare both of them with a dot product. They
can also be weighted in the same way as the normal map using curvature.

In summary, below is a table of the different evidence measures that I will analyse for the
project.

4.2.2 Aggregation

As an aggregation function rather than a window based approach I use a Gaussian convo-
lution over all evidence values at the same disparity. This encourages neighbouring pixels
to have a similar disparity. The aggregation can be thought of as taking the disparity space
image of evidences and applying a Gaussian convolution to each disparity plane.

33



Table 2: Evidence measures

Computation Evidence function
SSD of pixel intensity −(Ia − Ib)

2

Dot product of normals ena·nb−e0.5

e1−e0.5

Dot product of normals and curvature e|Ra−Rb| + ena·nb−e0.5

e1−e0.5

Maximum curvature (λk
Ma − λk

Mb)
2 or |λk

Ma − λk
Mb|

Mean curvature (Ka −Kb)
2 or |Ka −Kb|

Gaussian curvature (Ha −Hb)
2 or |Ha −Hb|

Curvedness (Ra −Rb)
2 or |Ra −Rb|

Shape index ∆φ
Shape index weighted by curvature e|Ra−Rb| + ∆φ
2D Direction of maximum curvature Mk

2a ·Mk
2b

3D Direction of maximum curvature Mk
a ·Mk

b

4.2.3 Disparity calculation

I will use a simple winner takes all approach, ignoring its flaws, as it is the simplest method.
By using a relatively simple method, it allows me to concentrate on the comparison of the
evidence measures and not on the matching abilities of the algorithm.

34



5 Implementation

It does not serve much purpose detailing the exact method of implementation, since the
project’s aim is to investigate the use of topological and curvature information to improve
stereo algorithms not the actual coding. However I will briefly overview of the code, to
enable a greater understanding of it, and perhaps to better enable its further use. The code
was written in C++ an object orientated language, which produces fast and clean code.
Some effort was made to keep the design of the whole system clean and neat, using an object
orientated design.

The whole system makes use of Will Smith’s shape-from-shading code [19]. Two grayscale
pixmaps are both run though his shape-from-shading scheme to produce normal maps, which
are output and saved to files. The normal maps are then supplied to my stereo comparison
program. My program provided with the two normal maps, uses a sum-of-squared-differences
algorithm to create a number of stereo comparisons for each curvature or topological method.
It also compares the each calculated disparity map for every evidence measure with a pro-
vided ground truth, using the analysis in Section-8. Finally it outputs the results to a tab
separated data file for comparison. The methods used for comparisons are described in
Section-7.

As a brief overview of the process used in my program, the program can be divided into
several steps.

• Loads the normal map files, checking they are in the right format.

• Loads either a ground truth disparity map or calculates a ground truth from two colour
surfaces provided using a simple SSD of intensities and a WTA disparity calculation.

• The disparity maps are calculated for every evidence measure by StereoMatch and
saved as a grey-scale image with 256 levels in portable grey-map (PGM) format.

• The calculated disparity maps are then compared to the ground truth and the results
are output to a data file.

The function StereoMatch is the main body of the program, implementing the sum-of-
squared-differences algorithm which is fully explained in Section-4.2. It takes four parame-
ters:

• match The output, the disparity map calculated from the evidence function.

• left The left normal map.

• right The right normal map.

35



• compare The evidence function to use.

The evidence calculators are separated into a separate file “Evidence.cpp”, these are passed
as function pointers to the main algorithm StereoMatch, which uses them to compare pixels
in the left and right images. Each evidence function is passed the stereo pair of normal maps
and the two locations being compared, returning the numerical evidence value between the
two locations. For each stereo pair of normals multiple evidence measures are used and
multiple output files are created. Most of the functions make use of one of several classes,
SMatrix, and SImage or SCImage which inherit from SMatrix, these encapsulate the file
operations, the data storage and retrieval. These classes make use of the () operator to
access the data.

All the code can be found in Appendix-B.

36



6 Test data

To achieve a good comparison of all the methods discussed they have to be applied to
many different images. The ability of a shape-from-shading or stereo algorithm is entirely
dependant on the actual images used as input. To have an understanding of how the different
methods perform, it is important to test under as many different conditions as possible.

To accurately compare the results of two different methods is impossible if there is no ground
truth data to which to compare the calculated disparity maps to. Unfortunately ground
truth values for disparity or depth are extremely hard to compute or determine from real
world images without specialised equipment. Due to this complexity in creating an accurate
stereo data with disparity maps from real world images, I will use mostly synthetic computer
generated images, where disparity is in some calculable. This is unfortunate since synthetic
images are rarely an accurate substitute for real world images.

6.1 Disparity calculation

A simple stereo image pair with no noise and a texture that provides a unique surface colour
at each surface point, can be used to calculate disparity using a simple comparison and a
winner-takes-all disparity calculation. When creating synthetic stereo images, it is possible
to use the same models and camera positions and apply a different texture with uniform
ambient lighting that provides images suitable for calculating disparity. Even using this
method there are still problems as there are still areas which are occluded in each image for
which no disparity can be calculated. Unfortunately calculating disparity in the real world
poses problems that makes it too hard to create some test data of real world images and
disparity maps for this project. Figure-8 shows the disparity calculation of a head, using a
rainbow texture to provide each horizontal position on the surface with a unique colour so
that the disparity can be calculated. The occluded area is shown in red

Figure 8: Disparity calculation.

37



6.2 Synthesis

I use Strata 3D Pro to render the results, which I then convert to the portable greymap
(PGM) format. Synthetic images have been used extensively for qualitative evaluations
of stereo methods, however there are many problems with using them. Real cameras are
seldom modelled properly, I use some noise but there are many other ‘features’ of real cameras
that are harder to model, for instance, aliasing, slight misalignment, lens aberrations, and
fluctuations in gain and bias. Frequently results on synthetic images therefore usually do
not extrapolate to images taken with real cameras.

To create a suitable data set for a comparison of different methods that covers a wide variety
of image types. I look at several different image features to try and achieve a range of
suitably different images from which to test the different evidence measure functions. The
different features or data sets I will look at are:

Frequency: A test data set to look at how the frequency of ridges on a surface affect
the different evidence measures abilities. The images range from a smooth curve to lots of
ripples. I used the function z = cos(x × s) × cos(y × s) to create the surfaces. Which I
then rendered in Strata 3D Pro using a Lambertian surface and a single point light source,
from two different points of view to create a stereo pair. I then repeated the process using
different values for s to create surfaces of differing frequencies.

Figure 9: Stereo pairs for different frequencies.

I used a range of 1, 0.5, 0.25, 0.125 and 0.0625 for s. The stereo pairs for s = 1 and s = 0.0625
are shown in Figure-9. All the other pictures used can be found in Appendix-A. The surface
is repetitive and it is likely that some methods will find the wrong correspondences. However
even though the surface is unnaturally smooth and repetitive, hopefully it will give some
insight into how the different evidence measures compare.

Amplitude: I created this data set to look at how the amplitude of the bumps on a surface
affect the surface reconstruction. The images range from flat to “very bumpy”. I used a
fractal landscape which I then rendered at several different scales of height. The structure of
the landscape is rough and has no repetitions, unlike the surfaces generated for the frequency

38



data set.

Lighting: Looking at how different lighting conditions affect the surface reconstruction.
From bright to dark, and different directions. Using the head model, Figure-4, I rendered
the head under four different lighting conditions. 1. Single point source from above 2. Single
point source from below, (this could create a worse normal map as the shape from shading
algorithm assumes an initial lighting direction from above, just as our brain does) 3. Two
point light sources from either side 4. Radiosity, area light sources and multiple reflections
with lots of ambient light, an attempt to model real world lighting conditions. These four
lighting conditions are shown for the left head in the stereo pair in Figure-10

Figure 10: Different lighting conditions.

Noise: Resilience of any method with respect to noise is an important feature, and to
test the differing performance of the evidence functions I use these simulated camera noise
pictures. The simulated camera noise, aims to reflect real world conditions better. Although
camera noise is much more complicated by adding noise I aim to gain some idea of the
evidence measures abilities to cope with real world situations. Using the head model again,
different amounts of simulated noise are applied to the final rendered model. To create the
noise I used Photoshop’s noise filter, using a monochromatic noise for an amount range of
25, 50, 100 for both Gaussian and uniform distributions. Below is the left member of the
stereo head pair with uniform and Gaussian noise applied of amount 50.

Figure 11: Uniform and Gaussian noise.

The head stereo pair is relatively simple, there are no large depth discontinuities, it is also
fairly smooth. I will also make use of the synthetic University of Bonn’s “corridor” data
set, Figure-12, which is a more complicated scene and is also supplied with different levels
of noise. Although it is unlikely that the textured floor or walls will work well for the initial
shape-from-shading step.

39



Figure 12: University of Bonn’s synthetic corridor.

Real world: Real world images are completely different to synthetic ones, and usually
many times harder to compute shape from. They are made up of complex textured non-
Lambertian objects under complex lighting I don’t expect good results for the more complex
images where the shape-from-shading assumptions completely fail.

I use a few actual real world stereo images, to help gauge how the different methods perform
with real images. Although for most of these true disparity maps are not calculable or
available, so the they have to be compared by eye. The selection of images are a random
assortment. The “Head” scene is a courtesy of the Computer Vision Lab at the University
of Tsukuba (Japan). The pentagon, mud ruts and Renault car part stereo pairs are from
the Carnegie Mellon University Vision and Autonomous Systems Center’s Image Database.
The stereo image of the eye, is a courtesy of Vision Imaging Systems Inc.

All the stereo images used in this project and the corresponding disparity maps are shown
in Appendix-A.

40



7 Analysis

The aim of analysis is to provide an accurate measure of the comparative performance of
each method at creating an accurate disparity map. Although the eventual aim of the shape-
from-stereo algorithm is to create an actual depth map or surface from the stereo images,
the comparison is just as valid if it is performed on the disparity images.

A fairly accurate analysis of which solution performs best is possible by eye, however it
is important to have an accurate numerical comparison. So that we can properly evalu-
ate the performance of each evidence function, we need a qualitative way of measuring its
performance.

7.1 Methods

To compare a calculated disparity map with the known ground truth, I use two simple pixel
by pixel comparisons, the same methods Scharstein used in [18].

Root-mean-squared error between ground truth dT (x, y) and the calculated disparity dC(x, y)
is:

R =

√
1

N

∑
(x,y)

(dT (x, y)− dC(x, y))2 (32)

where N is the total number of pixels. The root-mean-squared (RMS) error roughly can be
seen as a measure of how closely overall the calculated disparity map matches the ground
truth. An RMS error of 0 would mean a perfect match. It can however overlook image
defects, even if the actual disparity image structure does not resemble that of the ground
truth disparity map the RMS error can give good results.

To provide a more structural comparison is why we need a further performance measure,
the percentage of bad matching pixels. This roughly measures how well the actual structure
of the calculated disparity map conforms to the ground truth, regardless of large errors.
The percentage of bad matching pixels between ground truth dT (x, y) and the calculated
disparity dC(x, y) is:

B =
1

N

∑
(x,y)

((dT (x, y)− dC(x, y)) > δd) (33)

where δd is the disparity error threshold, the disparity error tolerance inside which pixels are

41



accurate. It is the percentage of pixels with a greater difference in disparity to the ground
truth than the threshold δd. For my results I used δd = 1.

42



8 Results

In the rest of this section I will overview all the results, comparing the evidence measures
for all the test data sets. Due to the large number of different results (over 300 disparity
maps) I only include results in the project that provide useful information and to clarify
comments, a lot of the results are fairly similar and where there is differences or interesting
features the results have been provided. If required the test data and the source code have
been provided in the appendices, to enable the calculation of further results. I will also make
some preliminary conclusions about the results, which are summed up in Section-9.

8.1 Evidence measures

To give an idea of what the evidence measures are using to create their matches, I created
actual images from the various different curvature and topological measures extracted from
the normal map.

Normal map: The normal map displayed as a needle-map is shown below in Figure-13. The
head and all its features can clearly be seen. The surface orientation is shown as “needles”
which point in the direction of the surface normal.

Figure 13: Normal map of the left stereo head

There is a little noise on the left hand side under the chin and at the left side of the nose,
this is probably caused by these areas being shadowed in the original images, Figure-4. The
shadowing removes all real shading information. However the rest of the surface is clear
and the orientation and structure of the surface seem reasonable. A good normal map is

43



essential, it is what all the other curvature and topological measures are calculated from,
any noise or inaccuracies in the normal map are passed down to all the different measures
calculated from the normal map. If the normal map is bad or inaccurate for any reason then
the curvature and topological evidence measures are going to be similarly inaccurate and
bad. Unfortunately there is no way around this problem, and the only solution is to use a
robust shape-from-shading scheme and stereo images which work well with it.

Maximum curvature: The maximum curvature of the stereo pair is below in Figure-14,
the intensity levels of the image have been adjusted to make the detail more clear.

Figure 14: Maximum curvature of the stereo pair of heads

Most of the detail or the normal map is still clear, although there is some noise in areas,
particularly the nose and under the left hand side of the chin, which comes directly from
the noise in the normal map. Overall the mean curvature seems to convey the surface
fairly well. However apart form where there are sharp edges and ridges in the surface the
maximum curvature is fairly even and texture-less over smooth areas on the surface, which
is a hindrance to applying shape-from-stereo.

Mean curvature: The mean curvature shown in Figure-15 is similar to the maximum
curvature. The intensity levels of the image have again been adjusted to make the detail
more clear, but the actual values have a similar spread as those of the maximum curvature.

All the details of the face are completely clear, and in general the mean curvature seems
more defined than the maximum curvature. In particular the nose is more defined and less
noisy than the maximum curvature nose. However the mean curvature also seems to suffer
from large texture-less areas of very similar shading. The mean curvature again inherits the
noise from the normal map, as all curvature measures will.

Gaussian curvature: Similar to the mean and maximum curvatures, the Gaussian curva-
ture of the stereo heads is shown in Figure-16. The Gaussian curvature is however much
more noisy, the range of values are also much smaller than either the maximum or mean
curvatures. The nose and the eye sockets are very messy, and particularly noisy.

Curvedness: Pretty similar to all the other curvature measures the curvedness is below in

44



Figure 15: Mean curvature of the stereo pair of heads

Figure 16: Gaussian curvature of the stereo pair of heads

Figure-17.

Shape index: Shape index shown in Figure-18 is a continuous topological measure rep-
resenting the curvature information. It is not a curvature but a topological measure, and
encodes the type of surface cup, rut or saddle, Table-1. The shape index is more highly
defined, than any of the curvature measures. Although the nose is again a little weak. The
texture-less areas are also smaller. The better definition and the smaller texture-less areas
probably mean that the shape index will produce the best evidence measure.

Conclusions: All the different curvature values are fairly similar in both contrast and
shading, they also seem to have similar defined and texture-less areas. These similarities will
certainly result in similar performances. The shape index is the most highly defined of the
curvature and topological measures and therefore will probably perform best. In contrast
the Gaussian curvature is the most noisy and will probably perform worst.

45



Figure 17: Curvedness of the stereo pair of heads

Figure 18: Shape index of the stereo pair of heads

8.2 Frequency

In this experiment I compare the success of different evidence measures for different frequen-
cies of a surface. I used five stereo pairs of the surface z = cos(x×s)×cos(y×s), these can be
found in Appendix-A. I hope to show that some of the evidence measures prove to be more
effective than a simple intensity comparison. A summary of the evidence measures used can
be found in Table-4.2.1. The stereo pairs are synthetic, which means that the simple SSD
of pixel intensities is almost always going to beat any surface curvature or topological mea-
sures. This is because the pixel intensities are exactly the same in either view at any point
in the surface since it is a Lambertian surface. However the surface is highly repetitive and
inaccurate matches are possible. To properly compare the ability of the surface curvature
or topological measures with the simpler pixel comparison we will have to look at the noisy
synthetic stereo pairs and the real world images. Figure-19 shows the performance of the
three evidence measures of the normal map, the normal map weighted by the curvature, and
the simple SSD of pixel intensities.

The initial dip in error both for the normals and the SSD of intensities evidence measures is
certainly caused by the lack of structure in the first stereo pair, it is almost flat. Both the
normals and the SSD of intensities evidence measures have problems accurately creating a

46



0

2

4

6

8

10

12

14

16

1 0.5 0.25 0.125 0.0625

S

R
M

S
 E

rr
o

r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 0.5 0.25 0.125 0.0625

S

B
a
d

 P
ix

e
ls

1
S

B
a
d

 P
ix

e
ls

Pixel Intensity

Normals

Normals & Curvature

Figure 19: Performance of normal map evidence measures for surface frequencies

point-to-point correspondence in the absence of much information.

For the surfaces s = 1 and s = 0.5 both the dot product of normals and the curvedness

47



weighted dot product of normals evidence measures have very similar results. In fact the
difference is in favour of the unweighted measure by only 0.01 RMS error. However as s
continues to decrease and the surface frequency increases the difference between the two
evidence measures increases dramatically. The curvedness weighted evidence measure has
almost double the error of the non-weighted evidence measure when s = 0.0625. As the
frequency increases so does the curvedness value, and the error introduced by the curved-
ness weighting increases, which accounts for the increasing error between the two evidence
measures seen as s decreases.

The dot product of normals evidence measure improves upon the simple intensity comparison
for the last three surfaces. This probably happens because there is an increasing area that is
shadowed as s decreases. The disparity maps for the SSD of pixel intensities and the normal
dot product evidence measures are shown below in Figure-21 for a surface of s = 0.125,
shown in Figure-20.

Figure 20: Stereo pair for surface z = cos(x× s)× cos(y × s) where s = 0.125

Figure 21: Ground truth and calculated disparity maps for pixel intensities and normals

Both the disparity maps of SSD of intensities and the dot product of normals evidence
measures have holes where the surface is shadowed. However the disparity map created by
the SSD of pixels intensities is far more noisy, almost certainly due to smaller shadowed
edges in the bottom half of the image which are covered over with the normal map and
the texture-less surfaces facing upwards. The shape-from-shading scheme tries to recover

48



an accurate integrable surface, and will fill in the smaller shadowed gaps, hopefully with
a smooth integrable surface. The SSD of intensities does not smooth over the shadowed
gaps and the shadowed areas even the smaller edges will create large errors when doing such
simple matching. Behind the noise the disparity map of the SSD of the pixel intensities is
however fairly accurate, but the dot product of normals is clearly a better evidence measure
in this circumstance. The other disparity maps were very similar to the one created from
the normals, most of them were slightly more noisy.

0

2

4

6

8

10

12

14

16

1 0.5 0.25 0.125 0.0625

s

R
M

S
 E

rr
o

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 0.5 0.25 0.125 0.063

s

B
ad

 P
ix

el
s 

%

Pixel Intensity

Normals

Normals & Curvature

Shape Index

Shape Index & Curvature

Mean Curvature Squared

Mean Curvature Absolute

Gauss Curvature Squared

Gauss Curvature Absolute

Curvedness Squared

Curvedness Absolute

Max Curvature Squared

Max Curvature Absolute

2D Max Curvature

3D Max Curvature

Figure 22: Performance of all evidence measures for surface frequencies

The performance of all the other evidence measures is shown in Figure-22, the graph of
bad pixels is essentially the same. The only other evidence measure that improves upon
the standard SSD of pixel intensities is the shape index weighted by curvedness, which is a
better measure than simply the shape index on its own. Almost all the different topological
and curvature measures are bunched together, with a similar initial dip before an increasing
error. In fact this ‘bunching’ of the curvature measures producing very similar results is
repeated in most of the test sets. The 2D and 3D maximum curvature directions however
seem to be consistently worse than any other evidence measures.

8.3 Amplitude

In this experiment I compare the success of different evidence measures for the same surface
scaled to different heights. I used a fractal surface then applied a height scale of 1, 2, 4, 8
and 16, the resulting stereo pictures can be found in Appendix-A.

49



0

1

2

3

4

5

6

7

8

9

1 2 4 8 16

Amplitude

R
M

S
 E

rr
o

r

Pixel Intensity

Normals

Normals & Curvature

Shape Index

Shape Index & Curvature

Figure 23: Performance of normal and shape index evidence measures for surface amplitudes

In Figure-23 I show just the performance of the two different normal and shape index evidence
measures, compared with the pixel intensity measure. The performance of all the other
curvature measures is very similar to the performance of the shape index. The curvedness
weighted shape index is the best performing measure, all the other measures follow a similar
shape just with slightly worse performance. The 2D and 3D direction of maximum curvature
again consistently provide the worst performance of any evidence measure.

Just as with the regular rippled surface used to test performance against frequency, the SSD
of intensities beats all surface curvature and topological evidence measures for the smooth flat
surfaces of amplitudes of multiples 1 and 2. However as the amplitude continues to increase
the error for the different surface curvature and topological evidence measures continues to
decrease whilst the error for the SSD of intensities increases. Compared to the surfaces used
for frequency the errors decrease as the surface becomes more curved instead of increasing.
This might be because of the lack of regular structure make correct matches more likely.
The SSD of intensities evidence measure however continues to increase.

The disparity maps, Figure-24 do not show any clear information, in general though the
disparity maps of the normals and curvature values are less ‘bitty’. Both of the evidence
measures suffer from failing again to calculate the disparity in the shadowed area, top left.

The addition of a curvature weighting seems to make little difference to the normals, and
consistently makes an improvement to the shape index. There is no repeat of the increasing
error as the surface became more highly curved, as there was in the repetitive surface used

50



Figure 24: Ground truth and calculated disparity maps for pixel intensities and normals

in the frequency test set. This is probably because the rougher surface does not have areas
of similar normals and the correct matches are more likely.

8.4 Lighting

Figure-25 shows the performance of the normal and shape index evidence measures under
different lighting conditions. We can see that the unweighted normals provide a consistently
better disparity map than the SSD of pixel intensities. Yet again the curvature enhanced
normals provides a strangely inaccurate disparity map, the rest of the curvature evidence
measures are similar to that of the shape index.

The actual lighting seems to make little difference to the performance of any of the evidence
measures. Even when the head is lit from underneath the shape-from-shading scheme still
manages to retrieve a good normal map from the heads and provide a good evidence measure.

8.5 Noise

The results are shown in Figure-26, we can clearly see that noise decreases performance as
one would expect. It is interesting to note that a Gaussian distribution of noise is worse
than a uniform one, this is probably because of the clumps, it is much more speckled and
bitty. Have a look at Figure-11.

The other curvature measures all perform similarly well, even the 2D and 3D maximum
curvature evidence measures have similar performance. In fact several of them actually
perform better than the shape index for once.

The structure of the disparity maps retrieved is shown below in Figure-27. The curvature
and topological methods are much better at discovering the surface behind the noise, than

51



0

2

4

6

8

10

12

14

16

18

Single point source Underneath Two point sources Natural light

R
M

S
 E

rr
o

r

Pixel Intensity

Normals

Normals & Curvature

Shape Index

Shape Index & Curvature

Figure 25: Performance of normal and shape index evidence measures for different lighting
conditions

the straight forward pixel comparison. This is evident in the percentage of bad pixels, where
the noise makes little difference to the abilities of the evidence measures.

The other images used, the images of the corridor were a failure, just like the real world
images they were too textured and did not function well when using shape-from-shading.

8.6 Real world

Unfortunately none of the real world images provided any real comparison between evidence
measures. The normal maps and the derived curvature and topological information were
extremely noisy and inaccurate. The calculated disparity maps were even worse. Which
is unsurprising since none of the images where the sort of images that shape-from-shading
requires.

Although the real world stereo pairs did not provide insight into the performance of the
evidence measures, they did serve to highlight the short comings of shape-from-shading and
hence the short comings of the curvature and topological measures.

52



0

5

10

15

20

25

30

None 25 50 100 25G 50G 100G

Noise

R
M

S
 E

rr
o

r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

None 25 50 100 25G 50G 100G

Noise

B
a
d

 P
ix

e
ls

Pixel Intensity

Normals

Normals & Curvature

Shape Index

Shape Index & Curvature

Figure 26: Performance of normal and shape index evidence measures for noisy pictures

53



Figure 27: Disparity maps for pixel intensities and normals and mean curvature for uniform
noise of 20

54



9 Conclusion

In general the topological and curvature evidence measures did not perform well enough to be
considered a substitute for intensity based evidence measures. Especially when considering
the limited set of images shape-from-shading can be applied to and the heavy extra processing
needed before shape-from-stereo can be applied. However as the disparity images in Figure-
27 showed, the performance of the normals as an evidence measure can produce significantly
better results than simply the pixel intensities in some circumstances. And the ability to
cope with noise is impressive.

There are several conclusions that can be drawn from the results, some of which have either
been mentioned in part previously:

• Out of all the evidence measures tested almost all the curvature and topological mea-
sures produced very similar results. With the exception of the 2D and 3D maximum
curvatures. All of these measures were derived from the Hessian matrix, the differen-
tial structure of the surface. It appears that it is the Hessian matrix itself that is the
source of the similarity. Perhaps no matter how the data in the matrix is presented,
the differential structure of the surface is still the same data and matches similar ways.

• The poor performance that topological and curvature evidence measures had on the
real world images is unsurprisingly a reflection of the lack of ability of shape-from-
shading when dealing with real world images. This will always be the case because
shape-from-shading will probably never extract shape information properly from highly
textured surfaces. It’d could almost be called shape-from-texture if it did.

• However when restricted to non-repetitive highly defined Lambertian surfaces the
shape-from-stereo-from-shading scheme did produce a significant improvement over
the simple pixel intensities.

• The noise resilience of the curvature and topological evidence measures is perhaps the
most impressive of their features. Although the mean curvature did not recover the
actual shape of the face well in Figure-27 it did somehow extract it from the background
exceedingly well.

• The actual normal map is the best performing evidence measure, although it is some-
times improved by curvature.

• The shape index is the best performing of the scalar evidence measures. This is no sur-
prise as in Figure-18 the shape index out of all the curvature and topological measures
had the best definition and most texture.

In conclusion, this project has investigated the use of shading information to improve the
matching ability of a simple shape-from-shading algorithm. The results show some promise

55



especially in regard to highly defined Lambertian surfaces and to noisy images. Where the
curvature and topological evidence measures have shown that they can provide a significantly
better source of matching information for stereo images.

9.1 Future work

More data sets: The lack of any real stereo images for which there existed a ground truth
disparity map is a serious lack. There can be little in the way of meaningful comparison
without ground truth data. Scharstein [18] used a predicting method that using the cal-
culated disparity map predicted the appearance other views which were then compared to
the ground truth. Unfortunately this does not work extremely well with texture-less images,
however it would be useful to test the different evidence measures thus. There is also very few
good stereo images of smooth Lambertian objects, since most shape-from-stereo algorithms
concentrate on textured objects. To do a more detailed study of the ability of shape-from-
shading to improve shape-from-stereo, it would be essential to have a larger synthetic and
real world data set to work with.

Further uses of curvature measures: To look at the curvature and topological data not
as evidence measures in themselves but to look at using the information to guide comparisons
based on the pixel intensities. There is no need for the information to be used on its own,
and there are many more ways it could be used to weight other measures. Perhaps to help
improve shape-from-stereo in especially noisy conditions.

Other shape-from-stereo algorithms: By using a simple shape-from-stereo algorithm I
hoped to study the affects of the different evidence measures more clearly. Whether this will
extrapolate to more complicated shape-from-shading algorithms requires further investiga-
tion.

Other shape-from-shading algorithms: The shape-from-shading algorithm I used al-
though fairly robust, is a simple implementation. It could be improved in several ways,
notably by using the variance in the shape index to control the width of the robust error ker-
nel applied to the needle map to improve the algorithms performance, similar to Worthington
and Hancock’s method [29].

Test with other images: One of the possible advantages of using shape-from-shading that
could be explored further is its ability to work on images of different contrasts and gains.
This would be a large benefit for use with real cameras, however unfortunately the synthetic
images I used did not test the shape-from-shadings ability to do this.

Investigate the ability on noisy images: The major surprise was the superb ability of
the shape-from-stereo-from-shading schemes ability to deal with noisy images. It would be
useful to further investigate its ability to deal with noise. Perhaps this could a purpose in
itself; to recover features from noisy images.

56



References

[1] H. G. Barrow and J. M. Tenenbaum. Retrospective on interpreting line drawings as
three-dimensional surfaces. Artificial Intelligence, 59:71–80, 1993.

[2] R.T. Collins. A space-sweep approach to true multi-image matching. CVPR, pages
358–363, 1996.

[3] O. Faugeras and R. Keriven. Variational principles, surface evolution, pdes, level set
methods, and the stereo problem. IEEE Transactions on Image Processing, 7(3):336–
344, 1998.

[4] R.T. Frankot and R. Chellappa. Shape from Shading, chapter Obtaining Shape from
Shading Information. MIT Press, Cambridge , Mass, 1989.

[5] B.K.P. Horn. Shape from shading: A method for obtaining the shape of a smooth opaque
object from one view. PhD thesis, Massachusetts Institute Of Technology, Cambridge,
MA, 1970.

[6] B.K.P Horn. Obtaining Shape from Shading Information, pages 115–155. McGraw Hill,
NY, 1975.

[7] B.K.P Horn and M.J. Brooks. Shape and source from shading. International Joint
Conference on Artificial Intelligence, pages 932–936, 1985.

[8] J.Y.A.Wang and E.H. Adelson. Layered representation for motion analysis. CVPR,
pages 361–366, 1993.

[9] J.J. Koenderink and A.J. van Doorn. Surface shape and curvature scales. Image Vision
Comput. 10, pages 557–565, 1992.

[10] K.N. Kutulakos and S.M. Seitz. A theory of shape by space carving. IJCV, 38(3):199–
218, 2000.

[11] D. Marr and T. Poggio. Cooperative computation of stereo disparity. International
Journal of Computer Vision, 194:283 287, 1976.

[12] D.C. Marr. Vision. W. H. Freeman and Company, San Francisco, 1982.

[13] E. Mingolla and J. T. Todd. Perception of solid shape from shading. Biological Cyber-
netics, 53:137–151, 1986.

[14] A.P. Pentland. Local shading analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:170–187, 1984.

[15] A.P. Pentland. Shape information from shading: a theory about human perception.
Proceedings of International Conference on Computer Vision, page 404 413, 1988.

57



[16] J.E. Cryer R. Zhang, P. Tsai and M. Shah. Shape from shading: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(8):690–706, 1999.

[17] V.S. Ramachandran. Perceiving shape from shading. Scientific American, 159:76–83,
1988.

[18] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47:7–42, 2002.

[19] W. Smith. Face recognition using shape from shading, 2000.

[20] R. Szeliski and P. Golland. Stereo matching with transparency and matting. IJCV,
32(1):45–61, 1999.

[21] V. Torre T. Poggio and C. Koch. Computational vision and regularization theory.
Nature, 317:314–319, 1985.

[22] D. Terzopoulos and K. Fleischer. Deformable models. The Visual Computer, 4(6):306–
331, 1988.

[23] P.S. Tsai and M. Shah. Shape from shading using linear approximation. Image and
Vision Computing Journal, 12(8):487 –498, 1994.

[24] R.J. Woodham. Photometric stereo: A reflectance map technique for determining sur-
face orientation from image intensity. Image Understanding Systems and Industrial
Applications, Proc. S.P.I.E, 155, 1978.

[25] R.J. Woodham. Gradient and curvature from the photometric-stereo method, including
local confidence estimation. Journal of the Optical Society of America, 11(11):3050–
3068, 1994.

[26] P.L Worthington. Novel view synthesis using needle-map correspondence. ?, pages
718–727, 2002.

[27] P.L Worthington and E.R. Hancock. New constraints on data-closeness and needle map
consistency for shape-from-shading. Pattern Recognition, 21(12):1250–1267, 1999.

[28] P.L Worthington and E.R. Hancock. Object recognition using shape-from-shading.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 31–40, 2001.

[29] P.L Worthington and E.R. Hancock. Surface topography using shape-from-shading.
Pattern Recognition, 34:823–840, 2001.

[30] A. Yuille Y. Yang and J. Lu. Local, global, and multilevel stereo matching. CVPR,
pages 274–279, 1993.

[31] Y. Yeshurun and E.L. Schwartz. Cepstral filtering on a columnar image artchitecture:
A fast algorithm for binocular stereo segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(7):759–767, 1989.

58



A Test data

Frequency:

59



Amplitude:

60



Lighting:

61



Noise:

62



Real world:

63



B Source code

SCImage.h

/*

* Image.h

* StereoMatch

*

* Created by Will Thimbleby on Wed Feb 05 2003.

* Copyright (c) 2003 Will Thimbleby. All rights reserved.

*

*/

#include "SMatrix.h"

class SCImage : public SMatrix

{

public:

SCImage();

SCImage(int w, int h);

void ReadFromFile(char *fname);

void WriteToFile(char *fname);

};

SImage.h

/*

* Image.h

* StereoMatch

*

* Created by Will Thimbleby on Wed Feb 05 2003.

* Copyright (c) 2003 Will Thimbleby. All rights reserved.

*

*/

#include "SMatrix.h"

class SImage : public SMatrix

{

public:

SImage();

SImage(int w, int h);

void Normalise();

void Linear(double m, double c);

void ReadFromFile(char *fname);

void WriteToFile(char *fname);

};

SMatrix.h

/*

* Matrix.h

* StereoMatch

64



*

* Created by Will Thimbleby on Wed Feb 05 2003.

* Copyright (c) 2003 Will Thimbleby. All rights reserved.

*

*/

#ifndef SMATRIX

#define SMATRIX

class SMatrix

{

public:

double *data;

int width, height, depth;

SMatrix();

SMatrix(int w, int h = 1, int d = 1);

~SMatrix();

void SetSize(int w, int h = 1, int d = 1);

double& operator() (int x, int y = 0, int z = 0);

double operator() (int x, int y = 0, int z = 0) const;

void GaussSmooth(double SMOOTH);

};

#endif

SNormals.h

/*

* Normals.h

* StereoMatch

*

* Created by Will Thimbleby on Wed Feb 05 2003.

* Copyright (c) 2003 Will Thimbleby. All rights reserved.

*

*/

#include "SMatrix.h"

class SNormals : public SMatrix

{

public:

SNormals();

SNormals(int w, int h);

void ReadFromFile(char *fname);

void WriteToFile(char *fname);

};

Evidence.cpp

#include <iostream>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "SImage.h"

#include "SCImage.h"

#include "SNormals.h"

65



#define abs(x) ((x) < 0? -(x) : (x))

#define PI acos(-1)

SMatrix& Hessian(SNormals &normals)

{

SMatrix *hessian;

double Hessian[2][2], TempMat[2][2], C[2][2], S, c, temp;

double k1, k2, Nx, Ny, Nz, p, q;

int i, j;

hessian = new SMatrix(normals.width, normals.height, 4);

for(i=1;i<normals.width-1;i++)

{

for(j=1;j<normals.height-1;j++)

{

/* H = (0,0 0,1) */

/* (1,0 1,1) */

//printf("%f,%f,%f\n",normals(i,j,0),normals(i,j,1),normals(i,j,2));

Hessian[0][0] = (normals(i,j,0)/normals(i,j,2))-(normals(i-1,j,0)/normals(i-1,j,2));

Hessian[0][1] = (normals(i,j,1)/normals(i,j,2))-(normals(i-1,j,1)/normals(i-1,j,2));

Hessian[1][0] = (normals(i,j,0)/normals(i,j,2))-(normals(i,j-1,0)/normals(i,j-1,2));

Hessian[1][1] = (normals(i,j,1)/normals(i,j,2))-(normals(i,j-1,1)/normals(i,j-1,2));

// Implementation of Woodhams viewpoint-invariant curvature calculations

Nx = normals(i,j,0)/normals(i,j,2);

Ny = normals(i,j,1)/normals(i,j,2);

Nz = normals(i,j,2)/normals(i,j,2);

p = -Nx;

q = -Ny;

TempMat[0][0] = (q*q) + 1;

TempMat[0][1] = -(p*q);

TempMat[1][0] = -(p*q);

TempMat[1][1] = (p*p) + 1;

temp = 1 / sqrt( pow(1 + (p*p) + (q*q), 3) );

TempMat[0][0] *= temp;

TempMat[0][1] *= temp;

TempMat[1][0] *= temp;

TempMat[1][1] *= temp;

C[0][0] = (TempMat[0][0]*Hessian[0][0])+(TempMat[0][1]*Hessian[1][0]);

C[0][1] = (TempMat[0][0]*Hessian[0][1])+(TempMat[0][1]*Hessian[1][1]);

C[1][0] = (TempMat[1][0]*Hessian[0][0])+(TempMat[1][1]*Hessian[1][0]);

C[1][1] = (TempMat[1][0]*Hessian[0][1])+(TempMat[1][1]*Hessian[1][1]);

(*hessian)(i, j, 0) = C[0][0];

(*hessian)(i, j, 1) = C[0][1];

(*hessian)(i, j, 2) = C[1][0];

(*hessian)(i, j, 3) = C[1][1];

}

}

return *hessian;

}

SImage& Curvedness(SMatrix &hessian)

{

double S, c;

double k1, k2;

SImage *curvedness = new SImage(hessian.width, hessian.height);

int i, j;

66



for(i=1;i<hessian.width-1;i++)

{

for(j=1;j<hessian.height-1;j++)

{

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*(hessian(i,j,2)*hessian(i,j,1));

if (c<0)

{

c = (hessian(i,j,2)+hessian(i,j,1))/2;

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*c*c;

}

S = sqrt(c);

k1 = -0.5*(hessian(i,j,0)+hessian(i,j,3)-S);

k2 = -0.5*(hessian(i,j,0)+hessian(i,j,3)+S);

(*curvedness)(i, j) = sqrt(k2*k2+k1*k1);

}

}

return *curvedness;

}

SImage& MaxCurve(SMatrix &hessian)

{

double S, c;

double k1, k2;

SImage *curve = new SImage(hessian.width, hessian.height);

int i, j;

for(i=1;i<hessian.width-1;i++)

{

for(j=1;j<hessian.height-1;j++)

{

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*(hessian(i,j,2)*hessian(i,j,1));

if (c<0)

{

c = (hessian(i,j,2)+hessian(i,j,1))/2;

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*c*c;

}

S = sqrt(c);

k1 = -0.5*(hessian(i,j,0)+hessian(i,j,3)-S);

k2 = -0.5*(hessian(i,j,0)+hessian(i,j,3)+S);

(*curve)(i, j) = k1;

}

}

return *curve;

}

SImage& ShapeIndex(SMatrix &hessian)

{

double S, c;

double k1, k2;

SImage *shapeIndex = new SImage(hessian.width, hessian.height);

int i, j;

for(i=1;i<hessian.width-1;i++)

{

for(j=1;j<hessian.height-1;j++)

{

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*(hessian(i,j,2)*hessian(i,j,1));

if (c<0)

{

67



c = (hessian(i,j,2)+hessian(i,j,1))/2;

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*c*c;

}

S = sqrt(c);

k1 = -0.5*(hessian(i,j,0)+hessian(i,j,3)-S);

k2 = -0.5*(hessian(i,j,0)+hessian(i,j,3)+S);

(*shapeIndex)(i, j) = 2/PI*atan((k2+k1)/(k2-k1));

}

}

return *shapeIndex;

}

SImage& Mean(SMatrix &hessian)

{

double S, c;

double k1, k2;

SImage *shapeIndex = new SImage(hessian.width, hessian.height);

int i, j;

for(i=1;i<hessian.width-1;i++)

{

for(j=1;j<hessian.height-1;j++)

{

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*(hessian(i,j,2)*hessian(i,j,1));

if (c<0)

{

c = (hessian(i,j,2)+hessian(i,j,1))/2;

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*c*c;

}

S = sqrt(c);

k1 = -0.5*(hessian(i,j,0)+hessian(i,j,3)-S);

k2 = -0.5*(hessian(i,j,0)+hessian(i,j,3)+S);

(*shapeIndex)(i, j) = 0.5 * (k1 + k2);

}

}

return *shapeIndex;

}

SImage& Gauss(SMatrix &hessian)

{

double Hessian[2][2], S, c;

double k1, k2;

SImage *shapeIndex = new SImage(hessian.width, hessian.height);

int i, j;

for(i=1;i<hessian.width-1;i++)

{

for(j=1;j<hessian.height-1;j++)

{

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*(hessian(i,j,2)*hessian(i,j,1));

if (c<0)

{

c = (hessian(i,j,2)+hessian(i,j,1))/2;

c = pow(hessian(i,j,0) - hessian(i,j,3),2) + 4*c*c;

}

S = sqrt(c);

k1 = -0.5*(hessian(i,j,0)+hessian(i,j,3)-S);

k2 = -0.5*(hessian(i,j,0)+hessian(i,j,3)+S);

//printf("G:%f,%f=%f\n",k1,k2,k1*k2);

(*shapeIndex)(i, j) = k1 * k2;

}

68



}

return *shapeIndex;

}

#pragma mark -

double E_Dot(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

double xD, yD, zD;

xD = left(x, y, 0) * right(xx, yy, 0);

yD = left(x, y, 1) * right(xx, yy, 1);

zD = left(x, y, 2) * right(xx, yy, 2);

return (exp(xD+yD+zD)-exp(0.5))/(exp(1)-exp(0.5));

}

double E_DotCurve(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = Curvedness(Hessian(left));

siRight = Curvedness(Hessian(right));

inited = 1;

}

double xD, yD, zD;

xD = left(x, y, 0) * right(xx, yy, 0);

yD = left(x, y, 1) * right(xx, yy, 1);

zD = left(x, y, 2) * right(xx, yy, 2);

return (xD+yD+zD)+exp(-abs(siLeft(x,y)-siRight(x,y)));

}

double E_SI(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = ShapeIndex(Hessian(left));

siRight = ShapeIndex(Hessian(right));

inited = 1;

}

double angle = siLeft(x, y);

double angle2 = siRight(xx, yy);

angle = angle-angle2;

if(angle<0)angle*=-1;

if(angle > 1)

angle = 2-angle;

return -angle;

}

double E_SICurve(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static SImage cLeft, cRight;

static bool inited = 0;

69



if(!inited)

{

siLeft = ShapeIndex(Hessian(left));

siRight = ShapeIndex(Hessian(right));

cLeft = Curvedness(Hessian(left));

cRight = Curvedness(Hessian(right));

inited = 1;

}

double angle = siLeft(x, y);

double angle2 = siRight(xx, yy);

double c = cLeft(x, y);

double c2 = cRight(xx, yy);

angle = angle-angle2;

if(angle<0)angle*=-1;

if(angle > 1)

angle = 2-angle;

return -angle+exp(-abs(c-c2));

}

double E_MeanSqr(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = Mean(Hessian(left));

siRight = Mean(Hessian(right));

inited = 1;

}

double m1 = siLeft(x, y);

double m2 = siRight(xx, yy);

return -(m1-m2)*(m1-m2);

}

double E_MeanAbs(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = Mean(Hessian(left));

siRight = Mean(Hessian(right));

inited = 1;

}

double m1 = siLeft(x, y);

double m2 = siRight(xx, yy);

return -abs(m1-m2);

}

double E_GaussSqr(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = Gauss(Hessian(left));

siRight = Gauss(Hessian(right));

70



inited = 1;

}

double m1 = siLeft(x, y);

double m2 = siRight(xx, yy);

return -(m1-m2)*(m1-m2);

}

double E_GaussAbs(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = Gauss(Hessian(left));

siRight = Gauss(Hessian(right));

inited = 1;

}

double m1 = siLeft(x, y);

double m2 = siRight(xx, yy);

return -abs(m1-m2);

}

double E_CurveAbs(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = Curvedness(Hessian(left));

siRight = Curvedness(Hessian(right));

inited = 1;

}

double m1 = siLeft(x, y);

double m2 = siRight(xx, yy);

return -abs(m1-m2);

}

double E_CurveSqr(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = Curvedness(Hessian(left));

siRight = Curvedness(Hessian(right));

inited = 1;

}

double m1 = siLeft(x, y);

double m2 = siRight(xx, yy);

return -(m1-m2)*(m1-m2);

}

double E_MaxCurveSqr(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

71



static bool inited = 0;

if(!inited)

{

siLeft = MaxCurve(Hessian(left));

siRight = MaxCurve(Hessian(right));

inited = 1;

}

double m1 = siLeft(x, y);

double m2 = siRight(xx, yy);

return -(m1-m2)*(m1-m2);

}

double E_MaxCurveAbs(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SImage siLeft, siRight;

static bool inited = 0;

if(!inited)

{

siLeft = MaxCurve(Hessian(left));

siRight = MaxCurve(Hessian(right));

inited = 1;

}

double m1 = siLeft(x, y);

double m2 = siRight(xx, yy);

return -abs(m1-m2);

}

double E_2DMaxCurve(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SMatrix lh, rh;

static bool inited = 0;

double xl, yl, xr, yr, S, c;

if(!inited)

{

lh = Hessian(left);

rh = Hessian(right);

inited = 1;

}

c = pow(lh(x,y,0) - lh(x,y,3),2) + 4*(lh(x,y,2)*lh(x,y,1));

if (c<0)

{

c = (lh(x,y,2)+lh(x,y,1))/2;

c = pow(lh(x,y,0) - lh(x,y,3),2) + 4*c*c;

}

S = sqrt(c);

if(lh(x,y,0) >= lh(x,y,3))

{

xl = 0.5*(lh(x,y,0)-lh(x,y,3)+S);

yl = lh(x,y,2);

}

else

{

xl = -lh(x,y,1);

yl = 0.5*(lh(x,y,0)-lh(x,y,3)-S);

}

c = pow(rh(xx,yy,0) - rh(xx,yy,3),2) + 4*(rh(xx,yy,2)*rh(xx,yy,1));

if (c<0)

72



{

c = (rh(xx,yy,2)+rh(xx,yy,1))/2;

c = pow(rh(xx,yy,0) - rh(xx,yy,3),2) + 4*c*c;

}

S = sqrt(c);

if(rh(xx,yy,0) >= rh(xx,yy,3))

{

xr = 0.5*(rh(xx,yy,0)-rh(xx,yy,3)+S);

yr = rh(xx,yy,2);

}

else

{

xr = -rh(xx,yy,1);

yr = 0.5*(rh(xx,yy,0)-rh(xx,yy,3)-S);

}

return xl*xr+yl*yr;

}

double E_3DMaxCurve(SNormals &left, SNormals &right, int x, int y, int xx, int yy)

{

static SMatrix lh, rh;

static bool inited = 0;

double xl, yl, xr, yr, S, c;

double xl3, xr3, yl3, yr3, zl3, zr3, len;

if(!inited)

{

lh = Hessian(left);

rh = Hessian(right);

inited = 1;

}

c = pow(lh(x,y,0) - lh(x,y,3),2) + 4*(lh(x,y,2)*lh(x,y,1));

if (c<0)

{

c = (lh(x,y,2)+lh(x,y,1))/2;

c = pow(lh(x,y,0) - lh(x,y,3),2) + 4*c*c;

}

S = sqrt(c);

if(lh(x,y,0) >= lh(x,y,3))

{

xl = 0.5*(lh(x,y,0)-lh(x,y,3)+S);

yl = lh(x,y,2);

}

else

{

xl = -lh(x,y,1);

yl = 0.5*(lh(x,y,0)-lh(x,y,3)-S);

}

c = pow(rh(xx,yy,0) - rh(xx,yy,3),2) + 4*(rh(xx,yy,2)*rh(xx,yy,1));

if (c<0)

{

c = (rh(xx,yy,2)+rh(xx,yy,1))/2;

c = pow(rh(xx,yy,0) - rh(xx,yy,3),2) + 4*c*c;

}

S = sqrt(c);

if(rh(xx,yy,0) >= rh(xx,yy,3))

{

xr = 0.5*(rh(xx,yy,0)-rh(xx,yy,3)+S);

yr = rh(xx,yy,2);

}

else

{

73



xr = -rh(xx,yy,1);

yr = 0.5*(rh(xx,yy,0)-rh(xx,yy,3)-S);

}

//convert to 3d

xl3 = xl*left(x,y,2);

yl3 = yl*-left(x,y,2);

zl3 = xl*left(x,y,1)+yl*-left(x,y,0);

len = sqrt(xl3*xl3+yl3*yl3+zl3*zl3);

xl3 /= len; yl3 /= 3; zl3 /= 3;

xr3 = xr*right(xx,yy,2);

yr3 = yr*-right(xx,yy,2);

zr3 = xr*right(xx,yy,1)+yr*-right(xx,yy,0);

len = sqrt(xr3*xr3+yr3*yr3+zr3*zr3);

xr3 /= len; yr3 /= 3; zr3 /= 3;

return xl3*xr3+yl3*yr3+zl3*zr3;

}

SCImage.cpp

/*

* SCImage.cpp

* StereoMatch

*

* Created by Will Thimbleby on Wed Feb 05 2003.

* Copyright (c) 2003 Will Thimbleby. All rights reserved.

*

*/

#include "SCImage.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAXLINE 256

SCImage::SCImage() : SMatrix()

{

}

SCImage::SCImage(int w, int h) : SMatrix(w, h, 3)

{

}

void SCImage::ReadFromFile(char *fileName)

{

FILE *file;

char line[MAXLINE];

int x, y;

// Open file

if( !(file = fopen( fileName , "r" )) )

{

printf("Error Opening file : %s\n", fileName);

exit(1);

}

//get first line check file is right type

fgets(line, MAXLINE, file);

if (strcmp(line,"P5\n") == 0)

{

//skip comments

74



fgets(line, MAXLINE, file);

while (line[0] == ’#’)

{

fgets(line, MAXLINE, file);

}

//get size of image

sscanf(line,"%d %d",&width,&height);

//get image levels

fgets(line, MAXLINE, file);

//sscanf(line,"%d",&width,&height);

//allocate data

SetSize(width, height, 3);

//get the data

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

data[x+width*(y+0*height)] =

data[x+width*(y+1*height)] =

data[x+width*(y+2*height)] = (double)fgetc(file)/255;

}

}

//close the file

fclose(file);

return;

}

else if (strcmp(line,"P6\n") != 0)

{

printf("Cannot Read This Kind of PGM File\n");

exit(1);

}

//skip comments

fgets(line, MAXLINE, file);

while (line[0] == ’#’)

{

fgets(line, MAXLINE, file);

}

//get size of image

sscanf(line,"%d %d",&width,&height);

//get image levels

fgets(line, MAXLINE, file);

//sscanf(line,"%d",&width,&height);

//allocate data

SetSize(width, height, 3);

//get the data

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

data[x+width*(y+0*height)] = (double)fgetc(file)/255;

data[x+width*(y+1*height)] = (double)fgetc(file)/255;

data[x+width*(y+2*height)] = (double)fgetc(file)/255;

}

}

//close the file

fclose(file);

}

75



void SCImage::WriteToFile(char* fileName)

{

FILE *outFile;

int x, y;

//open the file

if( !(outFile = fopen( fileName, "w" )) )

{

printf("Error Opening file : %s\n", fileName);

exit(1);

}

//write the header data

fprintf(outFile, "P6\n");

fprintf(outFile, "#PPM Image Generated by Will Thimbleby\n");

fprintf(outFile, "%d %d\n%d\n", width, height, 256);

//write data

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

fprintf(outFile, "%c%c%c", (unsigned char)(data[x+width*(y+0*height)]*255), (unsigned char)(data[x+width*(y+1*height)]*255), (unsigned char)(data[x+width*(y+2*height)]*255));

}

}

//close the file

fclose(outFile);

}

SImage.cpp

/*

* Image.cpp

* StereoMatch

*

* Created by Will Thimbleby on Wed Feb 05 2003.

* Copyright (c) 2003 Will Thimbleby. All rights reserved.

*

*/

#include "SImage.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAXLINE 256

SImage::SImage() : SMatrix()

{

}

SImage::SImage(int w, int h) : SMatrix(w, h, 1)

{

}

void SImage::Linear(double m, double c)

{

int x, y;

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

76



data[x+width*y] = m*data[x+width*y]+c;

}

}

}

void SImage::Normalise()

{

double max_disparity, min_disparity, noneofthis;

int x, y;

//normalise levels

noneofthis = data[0];

max_disparity = -100000;

min_disparity = 100000;//data[0];

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

if(data[x+width*y] > max_disparity && !(data[x+width*y] > (noneofthis-1) && data[x+width*y] < (noneofthis+1)))

max_disparity = data[x+width*y];

if(data[x+width*y] < min_disparity && !(data[x+width*y] > (noneofthis-1) && data[x+width*y] < (noneofthis+1)))

min_disparity = data[x+width*y];

}

}

printf("%lf,%lf\n",min_disparity,max_disparity);

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

data[x+width*y] = (data[x+width*y]-min_disparity)/(max_disparity-min_disparity);

}

}

}

void SImage::ReadFromFile(char *fileName)

{

FILE *file;

char line[MAXLINE];

int x, y;

// Open file

if( !(file = fopen( fileName , "r" )) )

{

printf("Error Opening file : %s\n", fileName);

exit(1);

}

//get first line check file is right type

fgets(line, MAXLINE, file);

if (strcmp(line,"P5\n") != 0)

{

printf("Cannot Read This Kind of PGM File\n");

exit(1);

}

//skip comments

fgets(line, MAXLINE, file);

while (line[0] == ’#’)

{

fgets(line, MAXLINE, file);

}

//get size of image

sscanf(line,"%d %d",&width,&height);

//allocate data

SetSize(width, height, 1);

77



//get the data

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

data[x+width*y] = (double)fgetc(file)/255;

}

}

//close the file

fclose(file);

}

void SImage::WriteToFile(char* fileName)

{

FILE *outFile;

int x, y;

//open the file

if( !(outFile = fopen( fileName, "w" )) )

{

printf("Error Opening file : %s\n", fileName);

exit(1);

}

//write the header data

fprintf(outFile, "P5\n");

fprintf(outFile, "#PPM Image Generated by Will Thimbleby\n");

fprintf(outFile, "%d %d\n%d\n", width, height, 256);

//write data

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

fprintf(outFile, "%c", (unsigned char)(data[x+width*y]*255));

}

}

//close the file

fclose(outFile);

}

SMatrix.cpp

/*

* Matrix.cpp

* StereoMatch

*

* Created by Will Thimbleby on Wed Feb 05 2003.

* Copyright (c) 2003 Will Thimbleby. All rights reserved.

*

*/

#include "SMatrix.h"

#include <stdio.h>

#include <math.h>

double PI=acos(-1);

SMatrix::SMatrix()

{

width = height = depth = 0;

}

78



SMatrix::SMatrix(int w, int h = 1, int d = 1)

{

SetSize(w, h, d);

}

SMatrix::~SMatrix()

{

delete data;

}

void SMatrix::SetSize(int w, int h = 1, int d = 1)

{

width = w;

height = h;

depth = d;

data = new double [width*height*depth];

if(!data)

printf("Error allocating matrix");

}

double& SMatrix::operator() (int x, int y = 0, int z = 0)

{

return data[x+width*(y+height*z)];

}

double SMatrix::operator() (int x, int y = 0, int z = 0) const

{

return data[x+width*(y+height*z)];

}

void SMatrix::GaussSmooth(double SMOOTH)

{

double *tempData = new double [width*height*depth];

double pix;

int k_sz = (int)(3*SMOOTH), R;

int x, y, z, X, Y, Z;

double *G = new double [(2+2*k_sz)*(2+2*k_sz)];

if(SMOOTH > 0)

{

//kernel size (3x std)

//setup gaussian distribution

for(X=-k_sz; X<=k_sz; X++)

{

for(Y=-k_sz; Y<=k_sz; Y++)

{

G[(k_sz + X)+(1+2*k_sz)*(k_sz+Y)] = exp(-(X*X+Y*Y)/(double)(2*SMOOTH*SMOOTH))/((double)(SMOOTH*SMOOTH*2*PI));

}

}

//apply

for(x=0; x<width; x++)

for(y=0; y<height; y++)

for(z=0; z<depth; z++)

{

pix = 0;

for(X=-k_sz; X<=k_sz; X++)

{

for(Y=-k_sz; Y<=k_sz; Y++)

{

if((x+X >= 0 && x+X < width) && (y+Y >= 0 && y+Y < height))

pix = pix + data[(x+X)+width*((y+Y)+height*z)]*G[(k_sz + X)+(1+2*k_sz)*(k_sz+Y)];

}

}

tempData[x+width*(y+height*z)] = pix;

79



}

//copy into data

for(x=0; x<width; x++)

for(y=0; y<height; y++)

for(z=0; z<depth; z++)

{

data[x+width*(y+height*z)] = tempData[x+width*(y+height*z)];

}

}

delete tempData;

delete G;

}

SNormals. cpp

/*

* Image.cpp

* StereoMatch

*

* Created by Will Thimbleby on Wed Feb 05 2003.

* Copyright (c) 2003 Will Thimbleby. All rights reserved.

*

*/

#include "SNormals.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAXLINE 256

SNormals::SNormals() : SMatrix()

{

}

SNormals::SNormals(int w, int h) : SMatrix(w, h, 3)

{

}

void SNormals::ReadFromFile(char *fileName)

{

FILE *file;

int x, y;

// Open file

if( !(file = fopen( fileName , "r" )) )

{

printf("Error Opening file : %s\n", fileName);

exit(1);

}

//get size of image

fscanf(file,"%d %d",&width,&height);

//allocate data

SetSize(width, height, 3);

//get the data

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

fscanf(file, "%lf %lf %lf", &(data[x+width*(y+height*0)]), &(data[x+width*(y+height*1)]), &(data[x+width*(y+height*2)]));

}

80



}

//close the file

fclose(file);

}

void SNormals::WriteToFile(char* fileName)

{

FILE *outFile;

int x, y;

//open the file

if( !(outFile = fopen( fileName, "w" )) )

{

printf("Error Opening file : %s\n", fileName);

exit(1);

}

//write the header data

fprintf(outFile, "%d %d\n", width, height);

//write data

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

fprintf(outFile, "%lf %lf %lf", data[x+width*(y+height*0)], data[x+width*(y+height*1)], data[x+width*(y+height*2)]);

}

}

//close the file

fclose(outFile);

}

main.cpp

#include <iostream>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "SImage.h"

#include "SCImage.h"

#include "SNormals.h"

#define xDisparity_Max -50

#define EVID_THRESH 0.5

#define PI acos(-1)

//crude but works

#define isnan(x) ((x) != (x))

#define abs(x) ((x) < 0? -(x) : (x))

FILE *outFile;

void StereoMatch(int width, int height, SImage &match, SNormals &left, SNormals &right, double (*compare)(SNormals&, SNormals&,int,int,int,int));

void StereoMatch2(int width, int height, SImage &match, SCImage &left, SCImage &right);

void StereoMatch3(int width, int height, SImage &match, SImage &left, SImage &right);

SImage& Curvedness(SMatrix &normals);

SImage& ShapeIndex(SMatrix &normals);

SImage& Mean(SMatrix &normals);

SImage& Gauss(SMatrix &normals);

SImage& MaxCurve(SMatrix &normals);

81



SMatrix& Hessian(SNormals &normals);

double E_Dot(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_DotCurve(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_SI(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_SICurve(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_MeanSqr(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_MeanAbs(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_GaussSqr(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_GaussAbs(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_CurveSqr(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_CurveAbs(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_MaxCurveSqr(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_MaxCurveAbs(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_2DMaxCurve(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

double E_3DMaxCurve(SNormals &left, SNormals &right, int x, int y, int xx, int yy);

void CompareDisp(char *data, SImage &truth, SImage &disp)

{

double ms, s;

int i, j, bad=0;

ms = 0;

for(i=0;i<disp.width;i++)

{

for(j=0;j<disp.height;j++)

{

s = truth(i,j)-disp(i,j);

ms += s*s;

if(s*s > 1)

bad++;

}

}

fprintf(outFile, "%s\t%f\t%f\n", data, sqrt(ms/(i*j)),(float)bad/(i*j));

}

void appleEv(SImage *truth, SNormals *left, SNormals *right, double (*compare)(SNormals&, SNormals&,int,int,int,int), char *file)

{

SImage *disparity;

disparity = new SImage(left->width, left->height);

StereoMatch(*disparity, *left, *right, compare);

//disparity->Normalise();

disparity->WriteToFile(file);

CompareDisp(file, *truth, *disparity);

delete disparity;

}

int main (int argc, const char * argv[])

//*

{

outFile = fopen( "results.out", "w" );

SNormals *left, *right;

SImage *disparity, *truth;

//colour image

//truth = new SImage;

//truth->ReadFromFile(argv[5]);

SCImage *leftIC, *rightIC;

leftIC = new SCImage;

rightIC = new SCImage;

82



leftIC->ReadFromFile(argv[5]);

rightIC->ReadFromFile(argv[6]);

if(leftIC->width != rightIC->width || leftIC->height != rightIC->height)

{

printf("Colour Image sizes do not match");

exit(1);

}

truth = new SImage(leftIC->width, rightIC->height);

StereoMatch2(leftIC->width, leftIC->height, *truth, *leftIC, *rightIC);

//truth->Linear(-1, 255);

//disparity->Normalise();

truth->WriteToFile("colourpixelDisparity.ppm");

//*

//normals

//return;

left = new SNormals;

right = new SNormals;

left->ReadFromFile(argv[1]);

right->ReadFromFile(argv[2]);

if(left->width != right->width || left->height != right->height)

{

printf("Normal sizes do not match");

exit(1);

}

//output pretty pics

SMatrix hl, hr;

SImage l, r;

hl = Hessian(*left);

hr = Hessian(*right);

l = ShapeIndex(hl);l.Linear(.5, .5);l.WriteToFile("siLeft.ppm");

r = ShapeIndex(hr);r.Linear(.5, .5);r.WriteToFile("siRight.ppm");

l = MaxCurve(hl);

r = MaxCurve(hr);

l.Normalise();

r.Normalise();

l.WriteToFile("maxcurveLeft.ppm");

r.WriteToFile("maxcurveRight.ppm");

l = Curvedness(hl);

r = Curvedness(hr);

l.Normalise();

r.Normalise();

l.WriteToFile("curveLeft.ppm");

r.WriteToFile("curveRight.ppm");

l = Mean(hl);

r = Mean(hr);

l.Normalise();

r.Normalise();

l.WriteToFile("meanLeft.ppm");

r.WriteToFile("meanRight.ppm");

l = Gauss(hl);

r = Gauss(hr);

l.Linear(40,.5);

r.Linear(40,.5);

l.WriteToFile("gaussLeft.ppm");

r.WriteToFile("gaussRight.ppm");

//return;

//calculate disparities

appleEv(truth, left, right, &E_Dot, "dot_normals.ppm");

83



appleEv(truth, left, right, &E_DotCurve, "dotcurve_normals.ppm");

appleEv(truth, left, right, &E_SI, "shape_index.ppm");

appleEv(truth, left, right, &E_SICurve, "shapecurve_index.ppm");

appleEv(truth, left, right, &E_MeanSqr, "mean_sqr.ppm");

appleEv(truth, left, right, &E_MeanAbs, "mean_abs.ppm");

appleEv(truth, left, right, &E_GaussSqr, "gauss_sqr.ppm");

appleEv(truth, left, right, &E_GaussAbs, "gauss_abs.ppm");

appleEv(truth, left, right, &E_CurveSqr, "curve_sqr.ppm");

appleEv(truth, left, right, &E_CurveAbs, "curve_abs.ppm");

appleEv(truth, left, right, &E_MaxCurveSqr, "maxcurve_sqr.ppm");

appleEv(truth, left, right, &E_MaxCurveAbs, "maxcurve_abs.ppm");

appleEv(truth, left, right, &E_2DMaxCurve, "2dmaxcurve_abs.ppm");

appleEv(truth, left, right, &E_3DMaxCurve, "3dmaxcurve_abs.ppm");

//image

SCImage *leftI, *rightI;

leftI = new SCImage;

rightI = new SCImage;

leftI->ReadFromFile(argv[3]);

rightI->ReadFromFile(argv[4]);

if(leftI->width != rightI->width || leftI->height != rightI->height)

{

printf("Normal sizes do not match");

exit(1);

}

disparity = new SImage(leftI->width, rightI->height);

StereoMatch2(leftI->width, leftI->height, *disparity, *leftI, *rightI);

//disparity->Linear(1.0/leftI->width, 0);

CompareDisp("pixelDisparity.ppm", *truth, *disparity);

disparity->WriteToFile("pixelDisparity.ppm");

fclose(outFile);

return 0;//*/

}

void StereoMatch(SImage &match, SNormals &left, SNormals &right, double (*compare)(SNormals&, SNormals&,int,int,int,int))

{

int width, height;

width = left.width;

height = left.height;

int x, y;

int x_disparity, y_disparity;

int max_disparity, min_disparity;

double xD, yD, zD;

SMatrix evidence(width, height);

SMatrix confidence(width, height);

SMatrix disparity(width, height, 2);

for(x=0; x<width; x++)

for(y=0; y<height; y++)

{

confidence(x, y) = -100;

match(x, y) = 0;

disparity(x, y, 0) = 0;

disparity(x, y, 1) = 0;

}

for(x_disparity=0; x_disparity>xDisparity_Max; x_disparity--)

{

y_disparity = 0;

//for(y_disparity=-20; y_disparity<=20; y_disparity++)

{

84



//set all evidences to -100

for(x=0; x<width; x++)

for(y=0; y<height; y++)

evidence(x, y) = -100;

for(x=abs(x_disparity)+1; x<width-abs(x_disparity)-1; x++)

{

for(y=abs(y_disparity)+1; y<height-abs(y_disparity)-1; y++)

{

evidence(x, y) = compare(left, right, x, y, x+x_disparity, y+y_disparity);

/*

xD = left(x, y, 0) * right(x+x_disparity, y+y_disparity, 0);

yD = left(x, y, 1) * right(x+x_disparity, y+y_disparity, 1);

zD = left(x, y, 2) * right(x+x_disparity, y+y_disparity, 2);

evidence(x, y) =xD+yD+zD;//*/

/*

double angle = siLeft(x, y);

double angle2 = siRight(x+x_disparity, y+y_disparity);

angle = angle-angle2;

if(angle<0)angle*=-1;

if(angle > .5)

angle = 1-angle;

evidence(x, y) = 2-angle;//1-angle;//*

//*/

/*double c = curveLeft(x, y);

double c2 = curveRight(x+x_disparity, y+y_disparity);

if(isnan(c) || isnan(c2))

evidence(x, y) = 0;

else

evidence(x, y) = -((c-c2)*(c-c2));

//evidence(x, y) = (4*angle-(c-c2)*(c-c2));*/

//evidence(x, y) = gaussLeft(x, y)-gaussRight(x+x_disparity, y+y_disparity);

//evidence(x, y) = 100-evidence(x, y) * evidence(x, y);

}

}

//smooth the evidence function here

evidence.GaussSmooth(0.7);

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{//printf("%f,%f\n",evidence(x, y) , confidence(x, y));

if((/*evidence(x, y) > EVID_THRESH &&*/ /*!isnan(evidence(x, y)) &&*/ evidence(x, y) > confidence(x, y)))

{

confidence(x, y) = evidence(x, y);

disparity(x, y, 0) = x_disparity;

disparity(x, y, 1) = y_disparity;

}

}

}

}

}

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

if(confidence(x, y) > -100)

{

disparity(x, y, 0) = sqrt(disparity(x, y, 0)*disparity(x, y, 0)+disparity(x, y, 1)*disparity(x, y, 1));

match(x/*-disparity(x, y, 0)/2*/, y) = disparity(x, y, 0);

}

85



}

}

}

#define MAX(a, b) a>b ? a : b

#define MIN(a, b) a>b ? b : a

#define MAX(a, b, c) MAX(a,MAX(b,c)

#define MIN(a, b, c) MIN(a,MIN(b,c)

void RGBtoHSV( double r, double g, double b, double *h, double *s, double *v )

{

double min, max, delta;

//min = MIN( r, g, b );

min = (r>g ? g : r) > b ? b : (r>g ? b : r);

//max = MAX( r, g, b );

min = (r>g ? r : g) > b ? (r>g ? b : r) : b;

*v = max; // v

delta = max - min;

if( max != 0 )

*s = delta / max; // s

else {

// r = g = b = 0 // s = 0, v is undefined

*s = 0;

*h = -1;

return;

}

if( r == max )

*h = ( g - b ) / delta; // between yellow & magenta

else if( g == max )

*h = 2 + ( b - r ) / delta; // between cyan & yellow

else

*h = 4 + ( r - g ) / delta; // between magenta & cyan

*h *= 60; // degrees

if( *h < 0 )

*h += 360;

}

void StereoMatch2(int width, int height, SImage &match, SCImage &left, SCImage &right)

{

int x, y;

int x_disparity, y_disparity;

int max_disparity, min_disparity;

double xD, yD, zD;

SMatrix evidence(width, height);

SMatrix confidence(width, height);

SMatrix disparity(width, height, 2);

for(x=0; x<width; x++)

for(y=0; y<height; y++)

{

confidence(x, y) = 100;

match(x, y) = 0;

}

for(x_disparity=0; x_disparity>=xDisparity_Max; x_disparity--)

{

y_disparity = 0;

//for(y_disparity=-20; y_disparity<=20; y_disparity++)

{

//set all evidences to -100

for(x=0; x<width; x++)

for(y=0; y<height; y++)

86



evidence(x, y) = 100;

for(x=abs(x_disparity); x<width-abs(x_disparity); x++)

{

for(y=abs(y_disparity); y<height-abs(y_disparity); y++)

{

// Original measure used in BMVC02 paper

//*

xD = left(x, y, 0) - right(x+x_disparity, y+y_disparity, 0);

yD = left(x, y, 1) - right(x+x_disparity, y+y_disparity, 1);

zD = left(x, y, 2) - right(x+x_disparity, y+y_disparity, 2);

evidence(x, y) = xD*xD+yD*yD+zD*zD;//*/

/*double lh, ls, lv, rh, rs, rv;

double angle;

RGBtoHSV(left(x, y, 0),left(x, y, 1),left(x, y, 2),&lh,&ls,&lv);

RGBtoHSV(right(x+x_disparity, y+y_disparity, 0),right(x+x_disparity, y+y_disparity, 1),right(x+x_disparity, y+y_disparity, 2),&rh,&rs,&rv);

angle = abs(lh-rh);

if(angle > 180)

angle = 360-angle;

evidence(x, y) = angle+40*(ls-rs)*(ls-rs);//angle+abs(ls-rs)*40;//+abs(lv*rv)*60;

*/}

}

//smooth the evidence function here

//evidence.GaussSmooth(1);

for(x=0; x<width; x++)

{

for(y=0; y<height; y++)

{

if(/*evidence(x, y) > EVID_THRESH &&*/ evidence(x, y) < confidence(x, y))

{

confidence(x, y) = evidence(x, y);

disparity(x, y, 0) = x_disparity;

disparity(x, y, 1) = y_disparity;

}

}

}

}

}

//normalise levels

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

/*{

if(disparity(x, y, 0) > max_disparity)

max_disparity = disparity(x, y, 0);

if(disparity(x, y, 0) < min_disparity)

min_disparity = disparity(x, y, 0);

}*/

}

}

for(y=0; y<height; y++)

{

for(x=0; x<width; x++)

{

disparity(x, y, 0) = sqrt(disparity(x, y, 0)*disparity(x, y, 0)+disparity(x, y, 1)*disparity(x, y, 1));

match(x/*-disparity(x, y, 0)/2*/, y) = disparity(x, y, 0);

}

}

}

87



88


